Kinetics and Mechanism of Ignition in Reactive Al/Ni Nanostructured Materials

A high-speed electrothermography approach is applied to investigate the mechanism and kinetics for nanostructured Al/Ni foils. Application of the Kolmogorov–Johnson–Mehl–Avrami and adiabatic thermal explosion models reveal that the activation energy for nucleation appears to be much higher than that for the reaction. It is shown that formation of intermetallic nuclei is the limiting step that defines the ignition characteristics of the foils at temperatures below 500 K, while the process is reaction-limited at higher temperatures. Nucleation is also shown to play an important role during rapid (∼10 m/s) propagation of the combustion (reaction) wave along the Al/Ni foils. These findings suggest new approaches for controlling the ignition and combustion processes for nanostructured reactive materials.

[1]  A. Mukasyan,et al.  The Solid Flame Phenomenon: A Novel Perspective , 2018 .

[2]  T. P. Weihs,et al.  A detailed study of the Al3Ni formation reaction using nanocalorimetry , 2017 .

[3]  A. Mukasyan,et al.  Kinetics of SHS reactions: A review , 2017, International Journal of Self-Propagating High-Temperature Synthesis.

[4]  T. P. Weihs,et al.  X-ray reflectivity measurement of interdiffusion in metallic multilayers during rapid heating , 2017, Journal of synchrotron radiation.

[5]  Z. Néda,et al.  Cell-size distribution and scaling in a one-dimensional Kolmogorov-Johnson-Mehl-Avrami lattice model with continuous nucleation. , 2017, Physical review. E.

[6]  J. Morgiel,et al.  Effect of low and high heating rates on reaction path of Ni(V)/Al multilayer , 2017 .

[7]  E. Dreizin,et al.  Mechanochemically prepared reactive and energetic materials: a review , 2017, Journal of Materials Science.

[8]  A. Mukasyan,et al.  Reactive Ni/Al Nanocomposites: Structural Characteristics and Activation Energy. , 2017, The journal of physical chemistry. A.

[9]  E. Dreizin,et al.  Effect of milling temperature on structure and reactivity of Al–Ni composites , 2017, Journal of Materials Science.

[10]  F. Baras,et al.  Modeling self-sustaining waves of exothermic dissolution in nanometric Ni-Al multilayers , 2016 .

[11]  T. P. Weihs,et al.  Combustion in reactive multilayer Ni/Al nanofoils: Experiments and molecular dynamic simulation , 2016 .

[12]  A. Strachan,et al.  Exothermic Self-Sustained Waves with Amorphous Nickel , 2016 .

[13]  S. Son,et al.  Combustion of mechanically activated Ni/Al reactive composites with microstructural refinement tailored using two-step milling , 2015 .

[14]  S. Rouvimov,et al.  Nickel Oxide Reduction by Hydrogen: Kinetics and Structural Transformations , 2015 .

[15]  A. Mukasyan,et al.  Influence of high-energy ball milling on reaction kinetics in the Ni-Al system: An electrothermorgaphic study , 2015, International Journal of Self-Propagating High-Temperature Synthesis.

[16]  David P. Adams,et al.  Reactive multilayers fabricated by vapor deposition. A critical review , 2015 .

[17]  T. P. Weihs,et al.  In situ transmission electron microscopy investigation of the interfacial reaction between Ni and Al during rapid heating in a nanocalorimeter , 2014 .

[18]  T. P. Weihs,et al.  Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling. , 2014, The Review of scientific instruments.

[19]  T. P. Weihs,et al.  Mechanical fabrication of reactive metal laminate powders , 2014, Journal of Materials Science.

[20]  C. Doumanidis,et al.  Spark ignitable ball milled powders of Al and Ni at NiAl composition , 2014 .

[21]  Olivier Politano,et al.  Structure evolution and reaction mechanism in the Ni/Al reactive multilayer nanofoils , 2014 .

[22]  Xiaoping Zhou,et al.  Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. , 2014, ACS applied materials & interfaces.

[23]  M. Vieira,et al.  Reactive Commercial Ni/Al Nanolayers for Joining Lightweight Alloys , 2014, Journal of Materials Engineering and Performance.

[24]  M. Radulescu,et al.  Ni-Al Nanoscale Energetic Materials: Phenomena Involved During the Manufacturing of Bulk Samples by Cold Spray , 2014, Journal of Thermal Spray Technology.

[25]  T. P. Weihs,et al.  Studying exothermic reactions in the Ni-Al system at rapid heating rates using a nanocalorimeter , 2013 .

[26]  M. Aghayan,et al.  Non-isothermal phenomena in Mo/Si diffusion couple: Reaction kinetics and structure formation , 2013, International Journal of Self-Propagating High-Temperature Synthesis.

[27]  A. Mukasyan,et al.  Microstructure development during NiAl intermetallic synthesis in reactive Ni–Al nanolayers: Numerical investigations vs. TEM observations , 2013 .

[28]  S. Rouvimov,et al.  Microstructure-reactivity relationship of Ti + C reactive nanomaterials , 2013 .

[29]  Michael D. Grapes,et al.  Thresholds for igniting exothermic reactions in Al/Ni multilayers using pulses of electrical, mechanical, and thermal energy , 2013 .

[30]  A. Strachan,et al.  Tailored Reactivity of Ni+Al Nanocomposites: Microstructural Correlations , 2012 .

[31]  A. Mukasyan,et al.  Self-sustained waves of exothermic dissolution in reactive multilayer nano-foils , 2012 .

[32]  T. P. Weihs,et al.  Response of Ni/Al laminates to laser-driven compression , 2012 .

[33]  S. Vadchenko,et al.  Mechanically activated SHS of NiAl: Effect of Ni morphology and mechanoactivation conditions , 2012, International Journal of Self-Propagating High-Temperature Synthesis.

[34]  Hongyu Yu,et al.  A micro initiator realized by reactive Ni/Al nanolaminates , 2012, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[35]  T. P. Weihs,et al.  Enabling and controlling slow reaction velocities in low-density compacts of multilayer reactive particles , 2011 .

[36]  E. V. Smirnov,et al.  Macrokinetics of Solid-Phase Synthesis of an Activated 3Ni + Al Mixture in the Thermal Explosion Mode , 2010 .

[37]  T. P. Weihs,et al.  Direct characterization of phase transformations and morphologies in moving reaction zones in Al/Ni nanolaminates using dynamic transmission electron microscopy , 2010 .

[38]  T. P. Weihs,et al.  Time-resolved x-ray microdiffraction studies of phase transformations during rapidly propagating reactions in Al/Ni and Zr/Ni multilayer foils , 2010 .

[39]  S. Son,et al.  Kinetics of high temperature reaction in Ni-Al system: influence of mechanical activation. , 2010, The journal of physical chemistry. A.

[40]  S. Son,et al.  Thermal explosion in Al-Ni system: influence of mechanical activation. , 2009, The journal of physical chemistry. A.

[41]  Zheng-Wang Li,et al.  Microstructure and fracture properties of reaction-assisted diffusion bonding of TiAl intermetallic with Al/Ni multilayer foils , 2008 .

[42]  Lucas J. Koerner,et al.  Phase transformations during rapid heating of Al/Ni multilayer foils , 2008 .

[43]  Alexander S. Rogachev,et al.  Discrete reaction waves : Gasless combustion of solid powder mixtures , 2008 .

[44]  H. A. Chatilyan,et al.  Kinetics of tungsten carbidization under non-isothermal conditions , 2008 .

[45]  T. P. Weihs,et al.  Long-term stability of nanostructured systems with negative heats of mixing , 2007 .

[46]  J. Farjas,et al.  Modification of the Kolmogorov-Johnson-Mehl-Avrami rate equation for non-isothermal experiments and its analytical solution , 2006, 0811.1428.

[47]  A. Ferrière,et al.  NiAl intermetallic coatings elaborated by a solar assisted SHS process , 2006 .

[48]  M. Pantoya,et al.  Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale particulate composites , 2005 .

[49]  Omar M. Knio,et al.  Joining of stainless-steel specimens with nanostructured Al/Ni foils , 2004 .

[50]  A. J. Gavens,et al.  Al/Ni formation reactions: characterization of the metastable Al9Ni2 phase and analysis of its formation , 2003 .

[51]  Timothy P. Weihs,et al.  Joining bulk metallic glass using reactive multilayer foils , 2003 .

[52]  Sujit Roy,et al.  A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode , 2002 .

[53]  Timothy P. Weihs,et al.  Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils , 2000 .

[54]  T. P. Weihs,et al.  Investigating the thermodynamics and kinetics of thin film reactions by differential scanning calorimetry , 1997 .

[55]  A. Merzhanov,et al.  The present state of the thermal ignition theory: An invited review , 1971 .

[56]  D. Frank-Kamenetskii,et al.  Diffusion and heat exchange in chemical kinetics , 1955 .

[57]  M. Avrami Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III , 1941 .

[58]  M. Avrami Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei , 1940 .

[59]  N. N. Semenov Тепловая теория горения и взрывов , 1940 .

[60]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[61]  A. O. Allen,et al.  The Induction Period in Gaseous Thermal Explosions1 , 1935 .

[62]  N. Semenoff,et al.  Zur Theorie des Verbrennungsprozesses , 1928 .