Visual/infrared interferometry of Orion Trapezium stars: preliminary dynamical orbit and aperture synthesis imaging of the θ1 Orionis C system

Context. Located in the Orion Trapezium cluster, θ^1 Ori C is one of the youngest and nearest high-mass stars (O5-O7) known. Besides its unique properties as a magnetic rotator, the system is also known to be a close binary. Aims. By tracing its orbital motion, we aim to determine the orbit and dynamical mass of the system, yielding a characterization of the individual components and, ultimately, also new constraints for stellar evolution models in the high-mass regime. Furthermore, a dynamical parallax can be derived from the orbit, providing an independent estimate for the distance of the Trapezium cluster. Methods. Using new multi-epoch visual and near-infrared bispectrum speckle interferometric observations obtained at the BTA 6 m telescope, and IOTA near-infrared long-baseline interferometry, we traced the orbital motion of the θ^1 Ori C components over the interval 1997.8 to 2005.9, covering a significant arc of the orbit. Besides fitting the relative position and the flux ratio, we applied aperture synthesis techniques to our IOTA data to reconstruct a model-independent image of the θ^1 Ori C binary system. Results. The orbital solutions suggest a highly eccentricity (e ≈ 0.91) and short-period (P ≈ 10.9 yrs) orbit. As the current astrometric data only allows rather weak constraints on the total dynamical mass, we present the two best-fit orbits. Of these two, the one implying a system mass of 48 M_☉ and a distance of 434 pc to the Trapezium cluster can be favored. When also taking the measured flux ratio and the derived location in the HR-diagram into account, we find good agreement for all observables, assuming a spectral type of O5.5 for θ^1 Ori C1 (M = 34.0 M_☉, T_(eff) = 39 900 K) and O9.5 for C2 (M = 15.5 M_☉, T_(eff) = 31 900 K). Using IOTA, we also obtained first interferometric observations on θ^1 Ori D, finding some evidence for a resolved structure, maybe by a faint, close companion. Conclusions. We find indications that the companion C2 is massive itself, which makes it likely that its contribution to the intense UV radiation field of the Trapezium cluster is non-negligible. Furthermore, the high eccentricity of the preliminary orbit solution predicts a very small physical separation during periastron passage (~1.5 AU, next passage around 2007.5), suggesting strong wind-wind interaction between the two O stars.

[1]  H. Zinnecker,et al.  Binary Stars in the Orion Nebula Cluster , 2006, Proceedings of the International Astronomical Union.

[2]  F. Martins,et al.  UBVJHK synthetic photometry of Galactic O stars , 2006, astro-ph/0606587.

[3]  W. Traub,et al.  Few Skewed Disks Found in First Closure-Phase Survey of Herbig Ae/Be Stars , 2006, astro-ph/0606052.

[4]  G. Wade,et al.  The magnetic field and confined wind of the O star theta^1 Orionis C , 2006, astro-ph/0601623.

[5]  Isaac Newton Group,et al.  Detailed spectroscopic analysis of the Trapezium cluster stars inside the Orion nebula. Rotational v , 2005, astro-ph/0510288.

[6]  E. Feigelson,et al.  Chandra Orion Ultradeep Project Census of X-Ray Stars in the BN-KL and OMC-1S Regions , 2005 .

[7]  L. Loinard,et al.  Dynamical Decay of a Massive Multiple System in Orion KL? , 2005, astro-ph/0509201.

[8]  I. Bonnell,et al.  Binary systems and stellar mergers in massive star formation , 2005, astro-ph/0506689.

[9]  J. M. Carpenter,et al.  Dynamical Masses for Low-Mass Pre-Main-Sequence Stars: A Preliminary Physical Orbit for HD 98800 B , 2005, astro-ph/0508331.

[10]  W. Traub,et al.  Infrared Imaging of Capella with the IOTA Closure Phase Interferometer , 2005, astro-ph/0504482.

[11]  D. Cohen,et al.  Chandra HETGS Multiphase Spectroscopy of the Young Magnetic O Star θ1 Orionis C , 2005, astro-ph/0504296.

[12]  S. Lizano,et al.  Proper Motions of the BN Object and the Radio Source I in Orion: Where and When Did the BN Object Become a Runaway Star? , 2005, astro-ph/0504134.

[13]  W. Traub,et al.  Robust determination of optical path difference: fringe tracking at the infrared optical telescope array interferometer. , 2005, Applied optics.

[14]  F. Martins,et al.  A new calibration of stellar parameters of Galactic O stars , 2005, astro-ph/0503346.

[15]  J. Bally,et al.  The Birth of High-Mass Stars: Accretion and/or Mergers? , 2005, astro-ph/0502485.

[16]  Andrea Richichi,et al.  CHARM2: An updated Catalog of High Angular Resolution Measurements , 2005 .

[17]  A. Claret,et al.  New grids of stellar models including tidal-evolution constants up to carbon burning. III. From 0.8 , 2004 .

[18]  D. Ségransan,et al.  Data reduction methods for single-mode optical interferometry Application to the VLTI two-telescopes beam combiner VINCI , 2004, astro-ph/0406625.

[19]  Rafael Millan-Gabet,et al.  The PICNIC Interferometry Camera at IOTA , 2004 .

[20]  J. Tan The Becklin-Neugebauer Object as a Runaway B Star, Ejected 4000 Years Ago from the θ1 Orionis C System , 2004, astro-ph/0401552.

[21]  F. P. Schloerb,et al.  First Results with the IOTA3 Imaging Interferometer: The Spectroscopic Binaries λ Virginis and WR 140 , 2004, astro-ph/0401268.

[22]  G. Schaefer,et al.  Dynamical Masses of Young Stars in Multiple Systems , 2003, astro-ph/0307020.

[23]  N. Schulz,et al.  X-Ray Modeling of Very Young Early-Type Stars in the Orion Trapezium: Signatures of Magnetically Confined Plasmas and Evolutionary Implications , 2003, astro-ph/0306008.

[24]  Gerd Weigelt,et al.  Orbital motion of the massive multiple stars in the Orion Trapezium , 2003 .

[25]  Rafael Millan-Gabet,et al.  An integrated-optics 3-way beam combiner for IOTA , 2003, SPIE Astronomical Telescopes + Instrumentation.

[26]  Rafael Millan-Gabet,et al.  New beam-combination Techniques at IOTA , 2003, SPIE Astronomical Telescopes + Instrumentation.

[27]  A preliminary radial-velocity curve for the star θ1 Ori D , 2002 .

[28]  V. Tamazian,et al.  Preliminary Orbits and System Masses for Five Binary T Tauri Stars , 2002 .

[29]  Tim J. Harries,et al.  The magnetic field and wind confinement of θ1 Orionis C , 2002 .

[30]  E. Vitrichenko A study of the radial velocity of the star Θ1 Ori C , 2002 .

[31]  G. Weigelt,et al.  Multiplicity of the massive stars in the Orion Nebula cluster 1 1 Based on data collected at the SAO , 1999 .

[32]  K. M. Merrill,et al.  Circumstellar Disks in the Orion Nebula Cluster , 1998 .

[33]  D. Pourbaix Simultaneous least-squares adjustment of visual and spectroscopic observations of binary stars , 1998 .

[34]  O. Stahl Periodic Variability of θ1 Ori C , 1998 .

[35]  L. Kaper,et al.  Cyclical variability in stellar winds , 1998 .

[36]  Helium absorption and emission towards Theta(1) Ori C , 1997 .

[37]  L. Hillenbrand On the Stellar Population and Star-Forming History of the Orion Nebula Cluster , 1997 .

[38]  J. Linsky,et al.  Periodic X-Ray Emission from the O7 V Star θ1 Orionis C , 1997, astro-ph/9701145.

[39]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[40]  N. Walborn,et al.  A LARGE PERIODIC VARIATION IN THE STELLAR WIND OF THETA 1 ORIONIS C , 1994 .

[41]  O. Demircan,et al.  Stellar mass-luminosity and mass-radius relations , 1991 .

[42]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[43]  J. Mathis Interstellar dust and extinction , 1987 .

[44]  W. V. Altena,et al.  The Velocity Dispersion of the Orion Nebula Cluster. I , 1986 .

[45]  J. A. Docobo,et al.  On the analytic calculation of visual double star orbits , 1985 .

[46]  A. Lohmann,et al.  Speckle masking in astronomy: triple correlation theory and applications. , 1983, Applied optics.

[47]  B. Wirnitzer,et al.  Image reconstruction by the speckle-masking method. , 1983, Optics letters.

[48]  S. G. Wallenhorst,et al.  The size distribution of interstellar particles. III - Peculiar extinctions and normal infrared extinction , 1981 .

[49]  G. P. Weigelt,et al.  Modified astronomical speckle interferometry “speckle masking” , 1977 .

[50]  H. Levato,et al.  SPECTRAL TYPES IN THE ORION NEBULA CLUSTER. , 1976 .

[51]  H. L. Johnson,et al.  Astronomical Measurements in the Infrared , 1966 .

[52]  R. Trumpler THE DISTANCE OF THE ORION NEBULA , 1931 .