Vocal acoustic analysis and machine learning for the identification of schizophrenia

[1]  Masakazu Higuchi,et al.  CLASSIFICATION OF BIPOLAR DISORDER, MAJOR DEPRESSIVE DISORDER, AND HEALTHY STATE USING VOICE , 2018, Asian Journal of Pharmaceutical and Clinical Research.

[2]  Andries Petrus Engelbrecht,et al.  Data clustering using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[3]  E. Baca-García,et al.  Diagnostic stability of psychiatric disorders in clinical practice , 2007, British Journal of Psychiatry.

[4]  Wellington Pinheiro dos Santos,et al.  Detection and classification of masses in mammographic images in a multi-kernel approach , 2016, Comput. Methods Programs Biomed..

[5]  Mengjie Zhang,et al.  Particle Swarm Optimization for Feature Selection in Classification: A Multi-Objective Approach , 2013, IEEE Transactions on Cybernetics.

[6]  Lilian A. E. Weber,et al.  Computational Psychosomatics and Computational Psychiatry: Toward a Joint Framework for Differential Diagnosis , 2017, Biological Psychiatry.

[7]  Enrique R. Pouget,et al.  Prosody and lexical accuracy in flat affect schizophrenia , 2000, Psychiatry Research.

[8]  Xiaohui Hu,et al.  Engineering optimization with particle swarm , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[9]  Russell C. Eberhart,et al.  Computational intelligence - concepts to implementations , 2007 .

[10]  Martin Styner,et al.  Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure , 2018, Scientific Reports.

[11]  M. Alpert,et al.  Imagery mediation of vocal emphasis in flat affect. , 1977, Archives of general psychiatry.

[12]  Kionna Oliveira Bernardes Santos,et al.  AVALIAÇÃO DE UM INSTRUMENTO DE MENSURAÇÃO DE MORBIDADE PSÍQUICA: ESTUDO DE VALIDAÇÃO DO SELF-REPORTING QUESTIONNAIRE (SRQ-20) , 2010 .

[13]  Wellington Pinheiro dos Santos,et al.  Evaluation of Alzheimer's Disease by Analysis of MR Images using Multilayer Perceptrons and Kohonen SOM Classifiers as an Alternative to the ADC Maps , 2007, EMBC 2007.

[14]  M. Covington,et al.  Phonetic measures of reduced tongue movement correlate with negative symptom severity in hospitalized patients with first-episode schizophrenia-spectrum disorders , 2012, Schizophrenia Research.

[15]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[16]  Nadia Magnenat-Thalmann,et al.  Prediction of Negative Symptoms of Schizophrenia from Objective Linguistic, Acoustic and Non-verbal Conversational Cues , 2018, 2018 International Conference on Cyberworlds (CW).

[17]  Rita de Cássia Fernandes de Lima,et al.  Breast cancer diagnosis based on mammary thermography and extreme learning machines , 2018 .

[18]  A. Cohen,et al.  On the boundaries of blunt affect/alogia across severe mental illness: Implications for Research Domain Criteria , 2012, Schizophrenia Research.

[19]  A. Cohen,et al.  Vocal expression in schizophrenia: Less than meets the ear. , 2016, Journal of abnormal psychology.

[20]  W. Santos,et al.  A Dialectical Method to Classify Alzheimer's Magnetic Resonance Images , 2009 .

[21]  Michael A. Covington,et al.  S215. THE APROSODY OF SCHIZOPHRENIA: COMPUTATIONALLY DERIVED ACOUSTIC PHONETIC UNDERPINNINGS OF MONOTONE SPEECH , 2018, Schizophrenia Bulletin.

[22]  Glen Coppersmith,et al.  Predictive Linguistic Features of Schizophrenia , 2017, *SEMEVAL.

[23]  Peter F. Liddle,et al.  Clinical Utility of Machine-Learning Approaches in Schizophrenia: Improving Diagnostic Confidence for Translational Neuroimaging , 2013, Front. Psychiatry.

[24]  Stefan Leucht,et al.  Clinical implications of Brief Psychiatric Rating Scale scores. , 2005, The British journal of psychiatry : the journal of mental science.

[25]  Murray Alpert,et al.  Computerized measurement of negative symptoms in schizophrenia. , 2008, Journal of psychiatric research.

[26]  M. Frank,et al.  Computational psychiatry as a bridge from neuroscience to clinical applications , 2016, Nature Neuroscience.

[27]  L. DeLisi,et al.  An automated method to analyze language use in patients with schizophrenia and their first-degree relatives , 2010, Journal of Neurolinguistics.

[28]  Ana Paula Machado Goyano Mac-Kay,et al.  Speech-language intervention in schizophrenia: an integrative review , 2018 .

[29]  J. Mundt,et al.  Vocal Acoustic Biomarkers of Depression Severity and Treatment Response , 2012, Biological Psychiatry.

[30]  J. Mundt,et al.  Voice acoustic measures of depression severity and treatment response collected via interactive voice response (IVR) technology , 2007, Journal of Neurolinguistics.

[31]  Gang Wang,et al.  Detecting Depression Using an Ensemble Logistic Regression Model Based on Multiple Speech Features , 2018, Comput. Math. Methods Medicine.

[32]  D. Thalmann,et al.  Non-verbal speech cues as objective measures for negative symptoms in patients with schizophrenia , 2019, PloS one.

[33]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[34]  R. Salvador,et al.  The linguistic signature of hallucinated voice talk in schizophrenia , 2019, Schizophrenia Research.

[35]  Wellington Pinheiro dos Santos,et al.  Detection and classification of mammary lesions using artificial neural networks and morphological wavelets , 2018 .

[36]  Riccardo Poli,et al.  Geometric Particle Swarm Optimisation , 2007, EuroGP.

[37]  Enrique Alba,et al.  Sensitivity and specificity based multiobjective approach for feature selection: Application to cancer diagnosis , 2009, Inf. Process. Lett..

[38]  Nadia Magnenat-Thalmann,et al.  Prediction of Negative Symptoms of Schizophrenia from Emotion Related Low-Level Speech Signals , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[39]  R. Castro,et al.  Epigenetic modifications: basic mechanisms and role in cardiovascular disease. , 2011, Circulation.

[40]  C. Billington,et al.  Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet , 2017, Physiology & Behavior.

[41]  Yuhui Shi,et al.  Co-evolutionary particle swarm optimization to solve min-max problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[42]  A. Meyer-Lindenberg,et al.  Machine Learning for Precision Psychiatry: Opportunities and Challenges. , 2017, Biological psychiatry. Cognitive neuroscience and neuroimaging.

[43]  Giulia Galotto,et al.  Unique Molecular Identifiers reveal a novel sequencing artefact with implications for RNA-Seq based gene expression analysis , 2018, Scientific Reports.

[44]  F. Martínez-Sánchez,et al.  Can the Acoustic Analysis of Expressive Prosody Discriminate Schizophrenia? , 2015, The Spanish Journal of Psychology.

[45]  Henri Cohen,et al.  Bradyphrenia and Bradykinesia Both Contribute to Altered Speech in Schizophrenia: A Quantitative Acoustic Study , 2005, Cognitive and behavioral neurology : official journal of the Society for Behavioral and Cognitive Neurology.

[46]  Co-prescription network reveals social dynamics of opioid doctor shopping , 2019, PloS one.

[47]  R. Reilly,et al.  Acoustic and temporal analysis of speech: A potential biomarker for schizophrenia. , 2010, Medical engineering & physics.

[48]  J. Overall,et al.  The Brief Psychiatric Rating Scale , 1962 .

[49]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[50]  F. Kapczinski,et al.  Avaliação de desempenho do Self-Reporting Questionnaire como instrumento de rastreamento psiquiátrico: um estudo comparativo com o Structured Clinical Interview for DSM-IV-TR , 2008 .

[51]  A. Carvalho,et al.  Comportamento comunicativo de indivíduos com diagnóstico de esquizofrenia , 2014 .

[52]  Jiang Chuanwen,et al.  A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimisation , 2005, Math. Comput. Simul..

[53]  M. Sigman,et al.  Automated analysis of free speech predicts psychosis onset in high-risk youths , 2015, npj Schizophrenia.

[54]  Riccardo Fusaroli,et al.  Voice patterns in schizophrenia: A systematic review and Bayesian meta-analysis , 2019, Schizophrenia Research.