ON RÉNYI DIVERGENCE MEASURES FOR CONTINUOUS ALPHABET SOURCES

[1]  E. Hellinger,et al.  Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. , 1909 .

[2]  A. D. Michal Matrix and tensor calculus , 1947 .

[3]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[4]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[5]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[6]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[7]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[8]  A. Rényi On Measures of Entropy and Information , 1961 .

[9]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[10]  L. L. Campbell,et al.  A Coding Theorem and Rényi's Entropy , 1965, Inf. Control..

[11]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[12]  S. M. Ali,et al.  A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .

[13]  W. Rudin Real and complex analysis , 1968 .

[14]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[15]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[16]  J. Burbea The convexity with respect to Gaussian distributions of divergences of order a , 1984 .

[17]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .

[18]  M. Basseville Distance measures for signal processing and pattern recognition , 1989 .

[19]  I. Vajda Theory of statistical inference and information , 1989 .

[20]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[21]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[22]  Shunsuke Ihara,et al.  Information theory - for continuous systems , 1993 .

[23]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[24]  Imre Csiszár Generalized cutoff rates and Renyi's information measures , 1995, IEEE Trans. Inf. Theory.

[25]  J. H. van Schuppen,et al.  System identification with information theoretic criteria , 1995 .

[26]  Christian Cachin,et al.  Entropy measures and unconditional security in cryptography , 1997 .

[27]  K. F. Riley,et al.  Mathematical Methods for Physics and Engineering , 1998 .

[28]  Julio Angel Pardo,et al.  Use of Rényi's divergence to test for the equality of the coefficients of variation , 2000 .

[29]  S. Roberts,et al.  Bayesian methods for autoregressive models , 2000, Neural Networks for Signal Processing X. Proceedings of the 2000 IEEE Signal Processing Society Workshop (Cat. No.00TH8501).

[30]  Igor Vajda,et al.  Entropy expressions for multivariate continuous distributions , 2000, IEEE Trans. Inf. Theory.

[31]  K. Song Rényi information, loglikelihood and an intrinsic distribution measure , 2001 .

[32]  Fady Alajaji,et al.  Rényi's divergence and entropy rates for finite alphabet Markov sources , 2001, IEEE Trans. Inf. Theory.

[33]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[34]  Kostas Zografos,et al.  Formulas for Rényi information and related measures for univariate distributions , 2003, Inf. Sci..

[35]  Fady Alajaji,et al.  Csisza/spl acute/r's cutoff rates for the general hypothesis testing problem , 2004, IEEE Transactions on Information Theory.

[36]  P. Jizba,et al.  The world according to R enyi: thermodynamics of multifractal systems , 2002, cond-mat/0207707.

[37]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[38]  M. Asadi,et al.  Information Measures for Pareto Distributions and Order Statistics , 2006 .

[39]  Igor Vajda,et al.  On Divergences and Informations in Statistics and Information Theory , 2006, IEEE Transactions on Information Theory.

[40]  P. Harremoës Interpretations of Rényi entropies and divergences , 2006 .

[41]  Karsten Berns,et al.  Probabilistic distance measures of the Dirichlet and Beta distributions , 2008, Pattern Recognit..

[42]  Imre Csiszár,et al.  Axiomatic Characterizations of Information Measures , 2008, Entropy.

[43]  Karl Pearson F.R.S. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling , 2009 .

[44]  D. Morales,et al.  Rényi statistics for testing equality of autocorrelation coefficients , 2009 .

[45]  Gholamhossein Yari,et al.  Some properties of Rényi entropy and Rényi entropy rate , 2009, Inf. Sci..

[46]  Einollah Pasha,et al.  Rényi entropy rate for Gaussian processes , 2010, Inf. Sci..

[47]  Peter Harremoës,et al.  Rényi divergence and majorization , 2010, 2010 IEEE International Symposium on Information Theory.

[48]  J. Aczel,et al.  On Measures of Information and Their Characterizations , 2012 .

[49]  Stephen H. Friedberg,et al.  Linear Algebra , 2018, Computational Mathematics with SageMath.

[50]  I. Vajda,et al.  Convex Statistical Distances , 2018, Statistical Inference for Engineers and Data Scientists.