A High order Conservative Flux Optimization Finite Element Method for Diffusion Equations

This article presents a high order conservative flux optimization (CFO) finite element method for the elliptic diffusion equations. The numerical scheme is based on the classical Galerkin finite element method enhanced by a flux approximation on the boundary of a prescribed set of arbitrary control volumes (either the finite element partition itself or dual voronoi mesh, etc). The numerical approximations can be characterized as the solution of a constrained-minimization problem with constraints given by the flux conservation equations on each control volume. The discrete linear system is a typical saddle-point problem, but with less number of degrees of freedom than the standard mixed finite element method, particularly for elements of high order. Moreover, the numerical solution of the proposed scheme is of super-closeness with the finite element solution. Error estimates of optimal order are established for the numerical flux as well as the primary variable approximations. We present several numerical studies in order to verify convergence of the CFO schemes. A simplified two-phase flow in highly heterogeneous porous media model problem will also be presented. The numerical results show obvious advantages of applying high order CFO schemes.

[1]  E. Süli,et al.  The accuracy of cell vertex finite volume methods on quadrilateral meshes , 1992 .

[2]  K. Aziz,et al.  Petroleum Reservoir Simulation , 1979 .

[3]  Junping Wang,et al.  A weak Galerkin mixed finite element method for second order elliptic problems , 2012, Math. Comput..

[4]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations , 2009, J. Comput. Phys..

[5]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[6]  Zhiqiang Cai,et al.  On the finite volume element method , 1990 .

[7]  Long Chen FINITE VOLUME METHODS , 2011 .

[8]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[9]  Michael Andrew Christie,et al.  Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .

[10]  Yalchin Efendiev,et al.  Accurate multiscale finite element methods for two-phase flow simulations , 2006, J. Comput. Phys..

[11]  Yuesheng Xu,et al.  Higher-order finite volume methods for elliptic boundary value problems , 2012, Adv. Comput. Math..

[12]  Victor Ginting,et al.  On the Application of the Continuous Galerkin Finite Element Method for Conservation Problems , 2013, SIAM J. Sci. Comput..

[13]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[14]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, Journal of Computational Physics.

[15]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[16]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of Nondivergence Form Elliptic Equations with Cordès Coefficients , 2012, SIAM J. Numer. Anal..

[17]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[18]  Yujie Liu,et al.  A Conservative Flux Optimization Finite Element Method for Convection-diffusion Equations , 2017, SIAM J. Numer. Anal..

[19]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[20]  Chi-Wang Shu,et al.  High order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD , 2001 .

[21]  Jim Douglas,et al.  Development and Analysis of Higher Order Finite Volume Methods over Rectangles for Elliptic Equations , 2003, Adv. Comput. Math..

[22]  Philippe Emonot Méthodes de volumes éléments finis : applications aux équations de Navier Stokes et résultats de convergence , 1992 .

[23]  Long Chen,et al.  A New Class of High Order Finite Volume Methods for Second Order Elliptic Equations , 2010, SIAM J. Numer. Anal..

[24]  Qingsong Zou,et al.  L2 Error Estimates for a Class of Any Order Finite Volume Schemes Over Quadrilateral Meshes , 2015, SIAM J. Numer. Anal..

[25]  T. Barth,et al.  Finite Volume Methods: Foundation and Analysis , 2004 .