Atom-chip Bose-Einstein condensation in a portable vacuum cell (4 pages)

A {sup 87}Rb Bose-Einstein condensate (BEC) is produced in a portable atom-chip system less than 30x30x15 cm, where the ultrahigh vacuum is maintained by a small, 8 L/s, ion pump and nonevaporable getter. An aluminum nitride chip with lithographically patterned copper is used to seal the vacuum system, provide the electrical feedthroughs, and create the magnetic trap potentials. All cooling and trapping processes occur 0.6-2.5 mm from ambient laboratory air. A condensate of about 2000 {sup 87}Rb atoms in F=2,m{sub F}=2 is achieved after 4.21 s of rf forced evaporation. A magneto-optical trap lifetime of 30 s indicates the vacuum near the chip surface is about 10{sup -10} torr. This work suggests that a chip-based BEC-compatible vacuum system can occupy a volume of less than 0.5 L.

[1]  Valerio Biancalana,et al.  Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption , 2003 .

[2]  Dana Z. Anderson,et al.  Guiding Neutral Atoms Around Curves with Lithographically Patterned Current-Carrying Wires , 1999 .

[3]  Collision-limited lifetimes of atom traps. , 1988 .

[4]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[5]  J. Schmiedmayer,et al.  Microscopic atom optics: from wires to an atom chip , 2008, 0805.2613.

[6]  B. P. Anderson,et al.  Loading a vapor-cell magneto-optic trap using light-induced atom desorption , 2001 .

[7]  Robinson,et al.  Very cold trapped atoms in a vapor cell. , 1990, Physical review letters.

[8]  P. Hommelhoff,et al.  Bose–Einstein condensation on a microelectronic chip , 2001, Nature.

[9]  C. Zimmermann,et al.  Bose-Einstein condensation in a surface microtrap. , 2001, Physical review letters.

[10]  Theodor W. Hänsch,et al.  ATOMIC MICROMANIPULATION WITH MAGNETIC SURFACE TRAPS , 1999 .

[11]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[12]  Cheng Chin,et al.  Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces. , 2004, Physical review letters.

[13]  Tilo Steinmetz,et al.  Coherence in microchip traps. , 2004, Physical review letters.

[14]  Jakob Reichel,et al.  Microchip traps and Bose–Einstein condensation , 2002 .

[15]  D Z Anderson,et al.  Waveguide atom beam splitter for laser-cooled neutral atoms. , 2000, Optics letters.

[16]  Dekker,et al.  Guiding neutral atoms on a chip , 1999, Physical review letters.

[17]  J. Schmiedmayer,et al.  Beam splitter for guided atoms. , 2000, Physical review letters.

[18]  Valeriy V. Yashchuk,et al.  Light-induced desorption of alkali-metal atoms from paraffin coating , 2002 .

[19]  T. W. Hänsch,et al.  Applications of integrated magnetic microtraps , 2001 .