Differential proteomic analysis of abnormal intramyoplasmic aggregates in desminopathy.

[1]  J. Schessl,et al.  Patient‐specific protein aggregates in myofibrillar myopathies: Laser microdissection and differential proteomics for identification of plaque components , 2012, Proteomics.

[2]  S. Strelkov,et al.  Desminopathies: pathology and mechanisms , 2012, Acta Neuropathologica.

[3]  Christian Stephan,et al.  A Combined Laser Microdissection and Mass Spectrometry Approach Reveals New Disease Relevant Proteins Accumulating in Aggregates of Filaminopathy Patients* , 2012, Molecular & Cellular Proteomics.

[4]  B. Domon,et al.  Targeted Proteomic Quantification on Quadrupole-Orbitrap Mass Spectrometer* , 2012, Molecular & Cellular Proteomics.

[5]  I. Ferrer,et al.  Pathophysiology of protein aggregation and extended phenotyping in filaminopathy. , 2012, Brain : a journal of neurology.

[6]  Derek J. Bailey,et al.  Parallel Reaction Monitoring for High Resolution and High Mass Accuracy Quantitative, Targeted Proteomics* , 2012, Molecular & Cellular Proteomics.

[7]  Y. Taniyama,et al.  Critical roles of cold shock domain protein A as an endogenous angiogenesis inhibitor in skeletal muscle. , 2011, Antioxidants & redox signaling.

[8]  J. Armstrong,et al.  Clinical and myopathological evaluation of early- and late-onset subtypes of myofibrillar myopathy , 2011, Neuromuscular Disorders.

[9]  K. Marcus,et al.  The AICD interacting protein DAB1 is up-regulated in Alzheimer frontal cortex brain samples and causes deregulation of proteins involved in gene expression changes. , 2011, Current Alzheimer research.

[10]  D. Selcen Myofibrillar myopathies , 2011, Neuromuscular Disorders.

[11]  M. Vorgerd,et al.  De novo desmin-mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy. , 2010, Human molecular genetics.

[12]  K. Blennow,et al.  cNEUPRO: Novel Biomarkers for Neurodegenerative Diseases , 2010, International journal of Alzheimer's disease.

[13]  J. Robbins,et al.  Autophagy in desmin-related cardiomyopathy: Thoughts at the halfway point , 2010, Autophagy.

[14]  S. Pattingre,et al.  Starvation-induced Hyperacetylation of Tubulin Is Required for the Stimulation of Autophagy by Nutrient Deprivation* , 2010, The Journal of Biological Chemistry.

[15]  K. Ohlendieck,et al.  Proteomic profiling of x-linked muscular dystrophy , 2009, Journal of Muscle Research and Cell Motility.

[16]  M. Olivé Extralysosomal Protein Degradation in Myofibrillar Myopathies , 2009, Brain pathology.

[17]  B. Schoser,et al.  Myofibrillar Myopathies: A Clinical and Myopathological Guide , 2009, Brain pathology.

[18]  I. Ferrer,et al.  In-frame deletion in the seventh immunoglobulin-like repeat of filamin C in a family with myofibrillar myopathy , 2009, European Journal of Human Genetics.

[19]  W. Baumgärtner,et al.  Cellular localization of Y-box binding protein 1 in brain tissue of rats, macaques, and humans , 2009, BMC Neuroscience.

[20]  K. Claeys,et al.  Differential involvement of sarcomeric proteins in myofibrillar myopathies: a morphological and immunohistochemical study , 2009, Acta Neuropathologica.

[21]  F. Muntoni,et al.  Mutation in BAG3 causes severe dominant childhood muscular dystrophy , 2008, Annals of neurology.

[22]  I. Ferrer,et al.  Molecular pathology of myofibrillar myopathies , 2008, Expert Reviews in Molecular Medicine.

[23]  K. Otsu,et al.  Crosstalk Between Autophagy and Apoptosis in Heart Disease , 2008, Circulation research.

[24]  Kai A Reidegeld,et al.  An easy‐to‐use Decoy Database Builder software tool, implementing different decoy strategies for false discovery rate calculation in automated MS/MS protein identifications , 2008, Proteomics.

[25]  C. Heyer,et al.  Clinical and morphological phenotype of the filamin myopathy: a study of 31 German patients. , 2007, Brain : a journal of neurology.

[26]  I. Ferrer,et al.  Expression of mutant ubiquitin (UBB+1) and p62 in myotilinopathies and desminopathies , 2007, Neuropathology and applied neurobiology.

[27]  J. Armstrong,et al.  Phenotypic patterns of desminopathy associated with three novel mutations in the desmin gene , 2007, Neuromuscular Disorders.

[28]  H. Goebel,et al.  Primary desminopathies , 2007, Journal of cellular and molecular medicine.

[29]  Visith Thongboonkerd,et al.  Proteomic identification of altered proteins in skeletal muscle during chronic potassium depletion: Implications for hypokalemic myopathy. , 2006, Journal of proteome research.

[30]  F. Chapon,et al.  Variable pathogenic potentials of mutations located in the desmin alpha‐helical domain , 2006, Human mutation.

[31]  A. Vortmeyer,et al.  Proteomic Analysis of Inclusion Body Myositis , 2006, Journal of neuropathology and experimental neurology.

[32]  Stefan Eulitz,et al.  Unusual splicing events result in distinct Xin isoforms that associate differentially with filamin c and Mena/VASP. , 2006, Experimental cell research.

[33]  U. Aebi,et al.  Severe muscle disease-causing desmin mutations interfere with in vitro filament assembly at distinct stages. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Hanns Lochmüller,et al.  A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy. , 2005, American journal of human genetics.

[35]  H. Goebel,et al.  The enlarging spectrum of desminopathies: new morphological findings, eastward geographic spread, novel exon 3 desmin mutation , 2005, Acta Neuropathologica.

[36]  C. Auffray,et al.  Characterization of a new human isoform of the enigma homolog family specifically expressed in skeletal muscle. , 2004, Biochemical and biophysical research communications.

[37]  Isidro Ferrer,et al.  Proteasomal Expression, Induction of Immunoproteasome Subunits, and Local MHC Class I Presentation in Myofibrillar Myopathy and Inclusion Body Myositis , 2004, Journal of neuropathology and experimental neurology.

[38]  K. Ohno,et al.  Myofibrillar myopathy: clinical, morphological and genetic studies in 63 patients. , 2004, Brain : a journal of neurology.

[39]  A. Engel,et al.  Myofibrillar myopathy caused by novel dominant negative αB‐crystallin mutations , 2003 .

[40]  H. Izumi,et al.  The pleiotropic functions of the Y-box-binding protein, YB-1. , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[41]  Ueli Aebi,et al.  Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. , 2003, Annual review of biochemistry.

[42]  S. Elledge,et al.  Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. , 2000, Genes & development.

[43]  D. Parry,et al.  A High Molecular Weight Intermediate Filament-associated Protein in BHK-21 Cells Is Nestin, a Type VI Intermediate Filament Protein , 1999, The Journal of Biological Chemistry.

[44]  C. Jackson,et al.  Myofibrillar myopathy: No evidence of apoptosis by TUNEL , 1999, Neurology.

[45]  J. Nagle,et al.  Missense mutations in desmin associated with familial cardiac and skeletal myopathy , 1998, Nature Genetics.

[46]  L. Hack On how to retain experienced RNs. , 1998, The Canadian nurse.

[47]  M. Chiesi,et al.  Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments. , 1992, Circulation research.

[48]  M. Price Skelemins: cytoskeletal proteins located at the periphery of M-discs in mammalian striated muscle , 1987, The Journal of cell biology.

[49]  M. Vorgerd,et al.  Filamin C-related myopathies: pathology and mechanisms , 2012, Acta Neuropathologica.

[50]  L. Tessitore,et al.  Understanding autophagy in cell death control. , 2010, Current pharmaceutical design.

[51]  M. Dalakas,et al.  Desmin myopathy. , 2004, Brain : a journal of neurology.

[52]  A. Engel,et al.  Myofibrillar myopathy caused by novel dominant negative alpha B-crystallin mutations. , 2003, Annals of neurology.

[53]  D. Parry,et al.  A high molecular weight intermediate filament-associated protein in BHK-21 cells is nestin, a type VI intermediate filament protein. Limited co-assembly in vitro to form heteropolymers with type III vimentin and type IV alpha-internexin. , 1999, The Journal of biological chemistry.