Natural image statistics and neural representation.

It has long been assumed that sensory neurons are adapted, through both evolutionary and developmental processes, to the statistical properties of the signals to which they are exposed. Attneave (1954)Barlow (1961) proposed that information theory could provide a link between environmental statistics and neural responses through the concept of coding efficiency. Recent developments in statistical modeling, along with powerful computational tools, have enabled researchers to study more sophisticated statistical models for visual images, to validate these models empirically against large sets of data, and to begin experimentally testing the efficient coding hypothesis for both individual neurons and populations of neurons.

[1]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[2]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[3]  Béla Julesz,et al.  Visual Pattern Discrimination , 1962, IRE Trans. Inf. Theory.

[4]  E. T. Jaynes,et al.  Where do we Stand on Maximum Entropy , 1979 .

[5]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[6]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  G. Buchsbaum,et al.  Trichromacy, opponent colours coding and optimum colour information transmission in the retina , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  G. Buchsbaum,et al.  Chromaticity coordinates of frequency-limited functions. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[9]  L. Maloney Evaluation of linear models of surface spectral reflectance with small numbers of parameters. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[10]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[11]  D Kersten,et al.  Predictability and redundancy of natural images. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[12]  P. Lennie,et al.  Mechanisms of color vision. , 1988, Critical reviews in neurobiology.

[13]  Jean-Francois Cardoso,et al.  Source separation using higher order moments , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[14]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[15]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[16]  Peter Földiák,et al.  Adaptation and decorrelation in the cortex , 1989 .

[17]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[18]  J.G. Daugman,et al.  Entropy reduction and decorrelation in visual coding by oriented neural receptive fields , 1989, IEEE Transactions on Biomedical Engineering.

[19]  Bernhard Wegmann,et al.  Statistical dependence between orientation filter outputs used in a human-vision-based image code , 1990, Other Conferences.

[20]  D. Field,et al.  Human discrimination of fractal images. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[21]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[22]  Leslie S. Smith,et al.  The principal components of natural images , 1992 .

[23]  D. G. Albrecht,et al.  Cortical neurons: Isolation of contrast gain control , 1992, Vision Research.

[24]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[25]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[26]  J. V. van Hateren,et al.  Spatiotemporal contrast sensitivity of early vision , 1993, Vision Research.

[27]  Zhaoping Li,et al.  What does post-adaptation color appearance reveal about cortical color representation? , 1993, Vision Research.

[28]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[29]  J. H. Van Hateren,et al.  Spatiotemporal contrast sensitivity of early vision , 1993, Vision Research.

[30]  Dawei W. Dong Associative Decorrelation Dynamics: A Theory of Self-Organization and Optimization in Feedback Networks , 1994, NIPS.

[31]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[32]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[33]  W. Bialek,et al.  Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[34]  James R. Bergen,et al.  Texture Analysis: Representation and Matching , 1995, ICIAP.

[35]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[36]  J. Atick,et al.  Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus , 1995 .

[37]  J. Atick,et al.  STATISTICS OF NATURAL TIME-VARYING IMAGES , 1995 .

[38]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[39]  Michael A. Webster,et al.  Human colour perception and its adaptation , 1996 .

[40]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[41]  Hagai Attias,et al.  Temporal Low-Order Statistics of Natural Sounds , 1996, NIPS.

[42]  Song-Chun Zhu,et al.  FRAME: filters, random fields, and minimax entropy towards a unified theory for texture modeling , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[43]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis , 1997, Neural Computation.

[44]  L. Abbott,et al.  Responses of neurons in primary and inferior temporal visual cortices to natural scenes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[45]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[46]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[47]  Leon N. Cooper,et al.  BCM network develops orientation selectivity and ocular dominance in natural scene environment , 1997, Vision Research.

[48]  Hagai Attias,et al.  Coding of Naturalistic Stimuli by Auditory Midbrain Neurons , 1997, NIPS.

[49]  Eero P. Simoncelli Statistical models for images: compression, restoration and synthesis , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[50]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[51]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[52]  Daniel L. Ruderman,et al.  Origins of scaling in natural images , 1996, Vision Research.

[53]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[54]  Rajesh P. N. Rao,et al.  Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex , 1997, Neural Computation.

[55]  J. Movshon,et al.  Pattern adaptation and cross-orientation interactions in the primary visual cortex , 1998, Neuropharmacology.

[56]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[57]  D. Perrett,et al.  The `Ideal Homunculus': decoding neural population signals , 1998, Trends in Neurosciences.

[58]  D. Ruderman,et al.  Statistics of cone responses to natural images: implications for visual coding , 1998 .

[59]  Terrence J. Sejnowski,et al.  Coding Time-Varying Signals Using Sparse, Shift-Invariant Representations , 1998, NIPS.

[60]  Aapo Hyvärinen,et al.  Emergence of Topography and Complex Cell Properties from Natural Images using Extensions of ICA , 1999, NIPS.

[61]  Eero P. Simoncelli,et al.  Image compression via joint statistical characterization in the wavelet domain , 1999, IEEE Trans. Image Process..

[62]  Ann B. Lee An Occlusion Model Generating Scale-Invariant Images , 1999 .

[63]  Hagai Attias,et al.  Independent Factor Analysis , 1999, Neural Computation.

[64]  Martin J. Wainwright,et al.  Visual adaptation as optimal information transmission , 1999, Vision Research.

[65]  P Reinagel,et al.  Natural scene statistics at the centre of gaze. , 1999, Network.

[66]  Bruno A. Olshausen,et al.  PROBABILISTIC FRAMEWORK FOR THE ADAPTATION AND COMPARISON OF IMAGE CODES , 1999 .

[67]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[68]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[69]  Eero P. Simoncelli,et al.  Natural Sound Statistics and Divisive Normalization in the Auditory System , 2000, NIPS.

[70]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[71]  M. Sur,et al.  Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex , 2000, Neuron.

[72]  D. Tolhurst,et al.  The human visual system is optimised for processing the spatial information in natural visual images , 2000, Current Biology.

[73]  N M Grzywacz,et al.  The role of early retinal lateral inhibition: More than maximizing luminance information , 2000, Visual Neuroscience.

[74]  Penio S. Penev Fast Convergent Factorial Learning of the Low-Dimensional Independent Manifolds in Optical Imaging D , 2000 .

[75]  C. Gilbert,et al.  On a common circle: natural scenes and Gestalt rules. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[77]  J. Collinge Their Causes and Molecular Basis , 2001 .

[78]  Bruno A. Olshausen,et al.  Sparse Codes and Spikes , 2001 .

[79]  J. Takahashi,et al.  Stopping time: the genetics of fly and mouse circadian clocks. , 2001, Annual review of neuroscience.

[80]  P. Best,et al.  Spatial processing in the brain: the activity of hippocampal place cells. , 2001, Annual review of neuroscience.

[81]  M. Sofroniew,et al.  Nerve growth factor signaling, neuroprotection, and neural repair. , 2001, Annual review of neuroscience.

[82]  D. Julius,et al.  The vanilloid receptor: a molecular gateway to the pain pathway. , 2001, Annual review of neuroscience.

[83]  Eero P. Simoncelli,et al.  Natural image statistics and divisive normalization: Modeling nonlinearity and adaptation in cortical neurons , 2002 .