Brazing of ZrB2–SiC ceramic with amorphous CuTiNiZr filler

[1]  S. Grasso,et al.  2D Raman mapping and thermal residual stresses in SiC grains of ZrB2–SiC ceramic composites , 2015 .

[2]  Gang Wang,et al.  Brazing of Ti2AlNb based alloy with amorphous Ti-Cu-Zr-Ni filler , 2015, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[3]  Xinqi Tian,et al.  Brazing of ZrB2–SiC–C ceramic and GH99 superalloy to form reticular seam with low residual stress , 2015 .

[4]  V. V. B. Prasad,et al.  Synthesis of ZrB2–SiC composite powder in air furnace , 2014 .

[5]  D. Fang,et al.  Electrical properties of ZrB2–SiC ceramics with potential for heating element applications , 2014 .

[6]  L. Ye,et al.  Joining of Cf/SiC composite with a Cu–Au–Pd–V brazing filler and interfacial reactions , 2014 .

[7]  Jiandong Hu,et al.  Microstructural and mechanical properties of jointed ZrO2/Ti–6Al–4V alloy using Ti33Zr17Cu50 amorphous brazing filler , 2013 .

[8]  Xinghong Zhang,et al.  Gelcasting of complex-shaped ZrB2–SiC ultra high temperature ceramic components , 2012 .

[9]  G. Wu,et al.  Microstructure and mechanical properties of ZrB2–SiC ultrahigh temperature ceramic composite joint using TiZrNiCu filler metal , 2011 .

[10]  Guo‐Jun Zhang,et al.  Microstructure and shear strength of self-joined ZrB2 and ZrB2–SiC with pure Ni , 2011 .

[11]  Zhi Wang,et al.  Flexural strength and fracture behavior of ZrB2-SiC ultra-high temperature ceramic composites at 1800°C , 2010 .

[12]  Gyoung-Ja Lee,et al.  Low-temperature brazing of titanium by the application of a Zr–Ti–Ni–Cu–Bebulk metallic glass (BMG) alloy as a filler , 2010 .

[13]  M. Singh,et al.  Joining of ZrB2-based ultra-high-temperature ceramic composites using Pd-based braze alloys , 2009 .

[14]  J. Zou,et al.  Brazing of Si3N4 with amorphous Ti40Zr25Ni15Cu20 filler , 2009 .

[15]  M. Singh,et al.  Brazing of ceramic-matrix composites to Ti and Hastealloy using Ni-base metallic glass interlayers , 2008 .

[16]  L. X. Zhang,et al.  Vacuum brazing of SiO2 glass ceramic and Ti-6Al-4V alloy using AgCuTi filler foil , 2008 .

[17]  R. Asthana,et al.  Joining of zirconium diboride-based ultra high-temperature ceramic composites using metallic glass interlayers , 2007 .

[18]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[19]  R. Watanabe,et al.  Wettability of Co¿V, and PdNi¿Cr¿V system alloys on SiC ceramic and interfacial reactions , 2007 .

[20]  William G. Fahrenholtz,et al.  Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region , 2007 .

[21]  Yu Zhou,et al.  Stacking faults formation mechanism of in situ synthesized TiB whiskers , 2006 .

[22]  Lai-fei Cheng,et al.  Liquid Infiltration Joining of 2D C/SiC Composite , 2006 .

[23]  M. L. Muolo,et al.  Wetting and spreading of liquid metals on ZrB2-based ceramics , 2005 .

[24]  P. He,et al.  Microstructure and strength of brazed joints of Ti3Al-base alloy with TiZrNiCu filler metal , 2005 .

[25]  M. L. Muolo,et al.  Wettability of zirconium diboride ceramics by Ag, Cu and their alloys with Zr , 2003 .

[26]  D. Sciti,et al.  Bonding of zirconia to super alloy with the active brazing technique , 2001 .

[27]  D. Szewieczek,et al.  Designing the brazed joint properties with application of amorphous tape as a filler metal , 1995 .

[28]  V. Fedotov,et al.  Application of amorphous filler metals in production of fusion reactor high heat flux components , 1995 .

[29]  I. Okamoto,et al.  Joining of Silicon Nitride Using Amorphous Cu-Ti Filler Metal(Materials, Metallurgy & Weldability) , 1987 .