Endomorphisms for Non-trivial Non-linear Loop Invariant Generation
暂无分享,去创建一个
[1] Enric Rodríguez-Carbonell,et al. Generating all polynomial invariants in simple loops , 2007, J. Symb. Comput..
[2] Robert W. Floyd,et al. Assigning Meanings to Programs , 1993 .
[3] Laura Kovács,et al. Reasoning Algebraically About P-Solvable Loops , 2008, TACAS.
[4] Kousha Etessami,et al. Analysis of Recursive Game Graphs Using Data Flow Equations , 2004, VMCAI.
[5] Rajeev Alur,et al. A Temporal Logic of Nested Calls and Returns , 2004, TACAS.
[6] Zohar Manna,et al. Temporal verification of reactive systems - safety , 1995 .
[7] Edsger W. Dijkstra,et al. A Discipline of Programming , 1976 .
[8] Yinghua Chen,et al. Generating Polynomial Invariants with DISCOVERER and QEPCAD , 2007, Formal Methods and Hybrid Real-Time Systems.
[9] Markus Müller-Olm,et al. Polynomial Constants Are Decidable , 2002, SAS.
[10] Patrick Cousot,et al. Abstract Interpretation and Application to Logic Programs , 1992, J. Log. Program..
[11] Patrick Cousot,et al. Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming , 2005, VMCAI.
[12] Enric Rodríguez-Carbonell,et al. Automatic generation of polynomial invariants of bounded degree using abstract interpretation , 2007, Sci. Comput. Program..
[13] Zohar Manna,et al. Temporal Verification of Reactive Systems , 1995, Springer New York.
[14] Deepak Kapur. Automatically Generating Loop Invariants Using Quantifier Elimination , 2005, Deduction and Applications.
[15] Yassine Lakhnech,et al. A Transformational Approach for Generating Non-linear Invariants , 2000, SAS.
[16] Ashish Tiwari,et al. A Technique for Invariant Generation , 2001, TACAS.
[17] Hassen Saïdi,et al. Powerful Techniques for the Automatic Generation of Invariants , 1996, CAV.
[18] Henny B. Sipma,et al. Non-linear loop invariant generation using Gröbner bases , 2004, POPL.
[19] Volker Weispfenning,et al. Quantifier Elimination for Real Algebra — the Quadratic Case and Beyond , 1997, Applicable Algebra in Engineering, Communication and Computing.