Yielding of Microstructured Geomaterial by Distinct Element Method Analysis

The purpose of this paper is to present macro- and micro-study on the yielding of microstructured geomaterials by numerical experiments. This target is achieved by carrying out 63 one-dimensional and biaxial compressions tests on an idealized bonded geomaterial with an extension of distinct element method, into which bond contact models proposed were implemented. Numerical results indicate that: (a) preconsolidated pressure appears to attribute to bond and looseness in the geomaterials, and an increase in void ratio leads to a decrease in yielding stress in one-dimensional tests; (b) an increase in bonding strength at interparticle contacts results in an increase in yielding stress and cohesion, and an internal friction angle that is smaller than the critical state value; (c) the observed first-yielding (initiation of bond breakage) is stress path dependent, and gross-yield (defined with respect to volumetric strain) of microstructured geomaterials is evidently related to bond breakage.