Numerical Issues When Using Wavelets

Wavelets and related multiscale representations pervade all areas of signal processing. The recent inclusion of wavelet algorithms in JPEG 2000 – the new still-picture compression standard– testifies to this lasting and significant impact. The reason of the success of the wavelets is due to the fact that wavelet basis represents well a large class of signals, and therefore allows us to detect roughly isotropic elements occurring at all spatial scales and locations. As the noise in the physical sciences is often not Gaussian, the modeling, in the wavelet space, of many kind of noise (Poisson noise, combination of Gaussian and Poisson noise, long-memory 1/f noise, non-stationary noise, ...) has also been a key step for the use of wavelets in scientific, medical, or industrial applications [1]. Extensive wavelet packages exist now, commercial (see for example [2]) or non commercial (see for example [3, 4]), which allows any researcher, doctor, or engineer to analyze his data using wavelets.

[1]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[2]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[3]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[4]  Tony F. Chan,et al.  Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .

[5]  Fionn Murtagh,et al.  Fast communication , 2002 .

[6]  Mohamed-Jalal Fadili,et al.  Sparsity and Morphological Diversity in Blind Source Separation , 2007, IEEE Transactions on Image Processing.

[7]  Jean-Christophe Olivo-Marin,et al.  Tracking fluroescent spots in biological video microscopy , 2003, SPIE BiOS.

[8]  Alagappa Chettiar Texture classification using Curvelet Statistical and Co-occurrence Features , 2006 .

[9]  Nouna Kettaneh,et al.  Statistical Modeling by Wavelets , 1999, Technometrics.

[10]  Mark J. Shensa,et al.  The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..

[11]  S. Mallat,et al.  Orthogonal bandelet bases for geometric images approximation , 2008 .

[12]  L. Deng Ieee Transactions on Speech and Audio Processing, Speech Trajectory Discrimination Using the Minimum Classiication Error Learning , 1997 .

[13]  P. Dutilleux An Implementation of the “algorithme à trous” to Compute the Wavelet Transform , 1989 .

[14]  Stéphane Mallat,et al.  Bandelet Image Approximation and Compression , 2005, Multiscale Model. Simul..

[15]  Fionn Murtagh,et al.  Gray and color image contrast enhancement by the curvelet transform , 2003, IEEE Trans. Image Process..

[16]  F. S. Prout Philosophical Transactions of the Royal Society of London , 2009, The London Medical Journal.

[17]  Richard Kronland-Martinet,et al.  Reading and Understanding Continuous Wavelet Transforms , 1989 .

[18]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[19]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[20]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  James S. Walker,et al.  A Primer on Wavelets and Their Scientific Applications , 1999 .

[22]  Fionn Murtagh,et al.  Image Processing and Data Analysis - The Multiscale Approach , 1998 .

[23]  Jean-Luc Starck,et al.  Cosmological Non-Gaussian Signature Detection: Comparing Performance of Different Statistical Tests , 2005, EURASIP J. Adv. Signal Process..

[24]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[25]  Jean-Luc Starck,et al.  Astronomical image and data analysis , 2002 .

[26]  Mohamed-Jalal Fadili,et al.  The Undecimated Wavelet Decomposition and its Reconstruction , 2007, IEEE Transactions on Image Processing.

[27]  Peter Hawkes,et al.  Advances in Imaging and Electron Physics , 2002 .

[28]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[29]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[30]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[31]  Arivazhagan Selvaraj,et al.  Texture classification using Curvelet Statistical and Co-occurrence Features , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[32]  Syed Twareque Ali,et al.  Two-Dimensional Wavelets and their Relatives , 2004 .

[33]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  S. Mallat A wavelet tour of signal processing , 1998 .

[35]  Bruno A. Olshausen,et al.  Sparse Coding Of Time-Varying Natural Images , 2010 .

[36]  Peter Bajorski,et al.  Wiley Series in Probability and Statistics , 2010 .

[37]  I. Daubechies,et al.  Wavelet Transforms That Map Integers to Integers , 1998 .

[38]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[39]  Fionn Murtagh,et al.  Multiresolution Support Applied to Image Filtering and Restoration , 1995, CVGIP Graph. Model. Image Process..

[40]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[41]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[42]  D. Donoho,et al.  Redundant Multiscale Transforms and Their Application for Morphological Component Separation , 2004 .

[43]  C. Bachoc,et al.  Applied and Computational Harmonic Analysis Tight P-fusion Frames , 2022 .

[44]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[45]  Mike E. Davies,et al.  Sparse and shift-Invariant representations of music , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[46]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[47]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[48]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[49]  Felix J. Herrmann,et al.  Seismic denoising with nonuniformly sampled curvelets , 2006, Computing in Science & Engineering.

[50]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[51]  Wim Sweldens,et al.  Building your own wavelets at home , 2000 .

[52]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[53]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[54]  Larry L. Schumaker,et al.  Curve and Surface Fitting: Saint-Malo 1999 , 2000 .

[55]  Ph. Tchamitchian,et al.  Wavelets: Time-Frequency Methods and Phase Space , 1992 .

[56]  Speckle reduction of SAR images using adaptive curvelet domain , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[57]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[58]  Wei Huang,et al.  Digital Image Watermark Algorithm in the Curvelet Domain , 2006, 2006 International Conference on Intelligent Information Hiding and Multimedia.

[59]  Yves Meyer,et al.  Wavelets - tools for science and technology , 1987 .

[60]  Richard Kronland-Martinet,et al.  A real-time algorithm for signal analysis with the help of the wavelet transform , 1989 .

[61]  Barbara Burke Hubbard The World According to Wavelets: The Story of a Mathematical Technique in the Making, Second Edition , 1996 .

[62]  Michael Elad,et al.  Morphological diversity and source separation , 2006, IEEE Signal Processing Letters.