Kirchhoff index in line, subdivision and total graphs of a regular graph

Let G be a connected regular graph and l ( G ) , s ( G ) , t ( G ) the line, subdivision, total graphs of G , respectively. In this paper, we derive formulae and lower bounds of the Kirchhoff index of l ( G ) , s ( G ) and t ( G ) , respectively. In particular, we give special formulae for the Kirchhoff index of l ( G ) , s ( G ) and t ( G ) , where G is a complete graph K n , a regular complete bipartite graph K n , n and a cycle C n .

[1]  Robin J. Wilson Introduction to Graph Theory , 1974 .

[2]  István Lukovits,et al.  Resistance-distance matrix: A computational algorithm and its application , 2002 .

[3]  M. Randic,et al.  Resistance distance , 1993 .

[4]  István Lukovits,et al.  Extensions of the Wiener Number , 1996, J. Chem. Inf. Comput. Sci..

[5]  Bojan Mohar,et al.  The Quasi-Wiener and the Kirchhoff Indices Coincide , 1996, J. Chem. Inf. Comput. Sci..

[6]  José Luis Palacios Foster's Formulas via Probability and the Kirchhoff Index , 2004 .

[7]  Michael Doob,et al.  Spectra of graphs , 1980 .

[8]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[9]  Douglas J. Klein,et al.  Graph Invariants for Fullerenes , 1995, J. Chem. Inf. Comput. Sci..

[10]  José Luis Palacios Closed‐form formulas for Kirchhoff index , 2001 .

[11]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[12]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[13]  Heping Zhang,et al.  Kirchhoff index of composite graphs , 2009, Discret. Appl. Math..

[14]  István Lukovits,et al.  Resistance distance in regular graphs , 1999 .

[15]  Douglas J. Klein,et al.  Resistance-Distance Sum Rules* , 2002 .

[16]  I. Gutman,et al.  Resistance distance and Laplacian spectrum , 2003 .

[17]  José Luis Palacios Resistance distance in graphs and random walks , 2001 .

[18]  Patrick W. Fowler Resistance distances in fullerene graphs , 2002 .

[19]  Bo Zhou,et al.  A note on Kirchhoff index , 2008 .

[20]  Xu Hui The Laplacian Spectrum and Kirchhoff Index of Product and Lexicographic Product of Graphs , 2003 .

[21]  István Lukovits,et al.  On the Definition of the Hyper-Wiener Index for Cycle-Containing Structures , 1995, J. Chem. Inf. Comput. Sci..

[22]  Douglas J. Klein,et al.  Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances , 1994 .