Bayesian matched-field geoacoustic inversion

This paper describes a Bayesian approach to matched-field inversion (MFI) of ocean acoustic data for seabed geoacoustic properties. In a Bayesian formulation, the unknown environmental and experimental parameters are considered random variables constrained by noisy data and prior information, and the goal is to interpret the multi-dimensional posterior probability density (PPD). The PPD is typically characterized in terms of point estimates, marginal distributions, and posterior correlations (or joint statistics). Computing these requires numerical optimization and integration of the PPD, which are carried out efficiently here using adaptive hybrid optimization and Metropolis‐ Hastings sampling in principal-component space, respectively. Likelihood and misfit functions for multi-frequency MFI with incomplete source spectral information are derived based on the assumption of complex Gaussiandistributed data errors with covariance matrices estimated from residual analysis; posterior statistical tests are applied to validate these estimates and assumptions. Model selection is carried out by applying the Bayesian information criterion to determine the simplest seabed parameterization consistent with the resolving power of the data. Bayesian MFI is illustrated for shallow-water acoustic data measured in the Mediterranean Sea. (Some figures in this article are in colour only in the electronic version)

[1]  Stan E. Dosso,et al.  GEOACOUSTIC INVERSION VIA LOCAL, GLOBAL, AND HYBRID ALGORITHMS , 1999 .

[2]  Stan E. Dosso,et al.  Geoacoustic Inversion for the Workshop '97 Benchmark Test Cases Using Simulated Annealing , 1998 .

[3]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[4]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[5]  E. J. Sullivan,et al.  Model‐based environmental inversion: A shallow water ocean application , 1995 .

[6]  Iain Murray Advances in Markov chain Monte Carlo methods , 2007 .

[7]  L. Neil Frazer,et al.  Importance reweighting reduces dependence on temperature in Gibbs samplers: an application to the coseismic geodetic inverse problem , 2005 .

[8]  Elizabeth A. Peck,et al.  Introduction to Linear Regression Analysis , 2001 .

[9]  M. Hobson,et al.  Efficient Bayesian inference for multimodal problems in cosmology , 2007, astro-ph/0701867.

[10]  Mrinal K. Sen,et al.  Global Optimization Methods in Geophysical Inversion , 1995 .

[11]  William H. Press,et al.  Numerical recipes , 1990 .

[12]  Christoph F. Mecklenbrauker,et al.  OBJECTIVE FUNCTIONS FOR OCEAN ACOUSTIC INVERSION DERIVED BY LIKELIHOOD METHODS , 2000 .

[13]  Peter Gerstoft,et al.  Uncertainty analysis in matched-field geoacoustic inversions. , 2006, The Journal of the Acoustical Society of America.

[14]  E. J. Sullivan,et al.  Ocean acoustic signal processing: A model‐based approach , 1992 .

[15]  N. R. Chapman,et al.  Workshop '97: Benchmarking for Geoacoustic Inversion in Shallow Water , 1998 .

[16]  Henrik Schmidt,et al.  Nonlinear inversion for ocean‐bottom properties , 1992 .

[17]  Tracianne B Neilsen,et al.  An iterative implementation of rotated coordinates for inverse problems. , 2003, The Journal of the Acoustical Society of America.

[18]  Stan E. Dosso,et al.  An adaptive-hybrid algorithm for geoacoustic inversion , 2001 .

[19]  Stan E. Dosso,et al.  Estimation of ocean-bottom properties by matched-field inversion of acoustic field data , 1993 .

[20]  Michael I. Taroudakis,et al.  On the use of matched-field processing and hybrid algorithms for vertical slice tomography , 1997 .

[21]  Loren W. Nolte,et al.  Wideband optimal a posteriori probability source localization in an uncertain shallow ocean environment , 1998 .

[22]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[23]  Stan E Dosso,et al.  Data error covariance in matched-field geoacoustic inversion. , 2006, The Journal of the Acoustical Society of America.

[24]  Peter Gerstoft,et al.  Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions , 1994 .

[25]  S. Dosso Quantifying uncertainty in geoacoustic inversion. I. A fast Gibbs sampler approach. , 2002, The Journal of the Acoustical Society of America.

[26]  Stan E Dosso,et al.  Uncertainty estimation in simultaneous Bayesian tracking and environmental inversion. , 2008, The Journal of the Acoustical Society of America.

[27]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[28]  M. Degroot,et al.  Probability and Statistics , 2021, Examining an Operational Approach to Teaching Probability.

[29]  Peter Gerstoft,et al.  Broadband Geoacoustic Inversion from Sparse Data Using Genetic Algorithms , 1998 .

[30]  L. Ingber Very fast simulated re-annealing , 1989 .

[31]  Klaus Mosegaard,et al.  MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .

[32]  C. Holland,et al.  Model selection and Bayesian inference for high-resolution seabed reflection inversion. , 2009, The Journal of the Acoustical Society of America.

[33]  John M. Ozard,et al.  Estimation of Geoacoustic Parameters from Narrowband Data Using a Search-Optimization Technique , 1998 .

[34]  S. Dosso,et al.  Data Uncertainty Estimation in Matched-Field Geoacoustic Inversion , 2006, IEEE Journal of Oceanic Engineering.

[35]  Peter Gerstoft,et al.  Bayesian model selection applied to self-noise geoacoustic inversion , 2004 .

[36]  A. Malinverno Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem , 2002 .

[37]  David P. Knobles,et al.  The Inversion of Ocean Waveguide Parameters Using a Nonlinear Least Squares Approach , 1998 .

[38]  Michael W Deem,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[39]  Loren W. Nolte,et al.  COMPUTATIONALLY EFFICIENT MONTE CARLO ESTIMATION ALGORITHMS FOR MATCHED FIELD PROCESSING IN UNCERTAIN OCEAN ENVIRONMENTS , 1994 .

[40]  Matched-field geoacoustic inversion with a horizontal array and low-level source , 2006 .

[41]  M.R. Fallat,et al.  An investigation of algorithm-induced variability in geoacoustic inversion , 2004, IEEE Journal of Oceanic Engineering.

[42]  Loren W. Nolte,et al.  A posteriori probability source localization in an uncertain sound speed, deep ocean environment , 1991 .

[43]  Stan E Dosso,et al.  Effects of incoherent and coherent source spectral information in geoacoustic inversion. , 2002, The Journal of the Acoustical Society of America.

[44]  S. Dosso,et al.  Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data. , 2002, The Journal of the Acoustical Society of America.

[45]  N. R. Chapman,et al.  A hybrid simplex genetic algorithm for estimating geoacoustic parameters using matched-field inversion , 1999 .

[46]  P. Gerstoft,et al.  Ocean acoustic inversion with estimation of a posteriori probability distributions , 1998 .

[47]  Peter Gerstoft,et al.  Inversion of acoustic data using a combination of genetic algorithms and the Gauss–Newton approach , 1995 .

[48]  Quantifying data information content in geoacoustic inversion , 2002 .

[49]  Garry J. Heard,et al.  Genetic Algorithm Inversion of the 1997 Geoacoustic Inversion Workshop Test Case Data , 1998 .

[50]  Michael I. Taroudakis,et al.  Bottom Geoacoustic Inversion by "Broadband" Matched-Field Processing , 1998 .

[51]  Michael D. Collins,et al.  Efficient navigation of parameter landscapes , 1994 .

[52]  H. Szu Fast simulated annealing , 1987 .