Class IA phosphatidylinositol 3-kinase in pancreatic β cells controls insulin secretion by multiple mechanisms.

[1]  P. Berggren,et al.  Insulin‐feedback via PI3K‐C2α activated PKBα/Akt1 is required for glucose‐stimulated insulin secretion , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[2]  B. Vanhaesebroeck,et al.  The emerging mechanisms of isoform-specific PI3K signalling , 2010, Nature Reviews Molecular Cell Biology.

[3]  R. Kulkarni,et al.  Insulin Signaling Regulates Mitochondrial Function in Pancreatic β-Cells , 2009, PloS one.

[4]  R. Kulkarni,et al.  Glucose Effects on Beta-Cell Growth and Survival Require Activation of Insulin Receptors and Insulin Receptor Substrate 2 , 2009, Molecular and Cellular Biology.

[5]  B. Giepmans,et al.  Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression. , 2009, Human molecular genetics.

[6]  Per-Olof Berggren,et al.  Insulin signaling in the pancreatic beta-cell. , 2008, Annual review of nutrition.

[7]  B. Lowell,et al.  Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. , 2008, The Journal of clinical investigation.

[8]  H. Kasai,et al.  Two cAMP‐dependent pathways differentially regulate exocytosis of large dense‐core and small vesicles in mouse β‐cells , 2007, The Journal of physiology.

[9]  Ji Luo,et al.  The p85α Regulatory Subunit of Phosphoinositide 3-Kinase Potentiates c-Jun N-Terminal Kinase-Mediated Insulin Resistance , 2007 .

[10]  S. Kahn,et al.  Mechanisms linking obesity to insulin resistance and type 2 diabetes , 2006, Nature.

[11]  G. Hotamisligil,et al.  Inflammation and metabolic disorders , 2006, Nature.

[12]  C. Kahn,et al.  Phosphoinositide 3-kinase regulatory subunit p85α suppresses insulin action via positive regulation of PTEN , 2006, Proceedings of the National Academy of Sciences.

[13]  Ji Luo,et al.  The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism , 2006, Nature Reviews Genetics.

[14]  C. Kahn,et al.  Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKClambda/zeta. , 2006, Cell metabolism.

[15]  Min Zhang,et al.  Total insulin and IGF-I resistance in pancreatic β cells causes overt diabetes , 2006, Nature Genetics.

[16]  Y. Kido,et al.  Ablation of PDK1 in pancreatic β cells induces diabetes as a result of loss of β cell mass , 2006, Nature Genetics.

[17]  Ji-yeon Lee,et al.  RIP-Cre Revisited, Evidence for Impairments of Pancreatic β-Cell Function* , 2006, Journal of Biological Chemistry.

[18]  C. Kahn,et al.  Critical nodes in signalling pathways: insights into insulin action , 2006, Nature Reviews Molecular Cell Biology.

[19]  T. Bártfai,et al.  Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients. , 2006, Diabetes.

[20]  A. Charollais,et al.  Connexin36 and pancreatic β-cell functions , 2006 .

[21]  R. DePinho,et al.  Class IA Phosphoinositide 3-Kinase Regulates Heart Size and Physiological Cardiac Hypertrophy , 2005, Molecular and Cellular Biology.

[22]  J. Ofrecio,et al.  Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. , 2005, Diabetes.

[23]  Paolo Meda,et al.  Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. , 2005, Diabetes.

[24]  H. Kasai,et al.  Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation. , 2005, The Journal of clinical investigation.

[25]  Christopher J. Rhodes,et al.  Type 2 Diabetes-a Matter of ß-Cell Life and Death? , 2005, Science.

[26]  T. Noda,et al.  Insulin receptor substrate 2 plays a crucial role in beta cells and the hypothalamus. , 2004, The Journal of clinical investigation.

[27]  Xueying Lin,et al.  Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes. , 2004, The Journal of clinical investigation.

[28]  Johan Auwerx,et al.  Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity , 2004, Nature.

[29]  H. Kasai,et al.  Sequential exocytosis of insulin granules is associated with redistribution of SNAP25 , 2004, The Journal of cell biology.

[30]  J. Klein,et al.  Positive and Negative Roles of p85α and p85β Regulatory Subunits of Phosphoinositide 3-Kinase in Insulin Signaling* , 2003, Journal of Biological Chemistry.

[31]  Robert A. Rizza,et al.  β-Cell Deficit and Increased β-Cell Apoptosis in Humans With Type 2 Diabetes , 2003, Diabetes.

[32]  Haruo Kasai,et al.  Fusion Pore Dynamics and Insulin Granule Exocytosis in the Pancreatic Islet , 2002, Science.

[33]  M. Stoffel,et al.  β-cell–specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter β-cell mass , 2002, Nature Genetics.

[34]  Kohjiro Ueki,et al.  Molecular Balance between the Regulatory and Catalytic Subunits of Phosphoinositide 3-Kinase Regulates Cell Signaling and Survival , 2002, Molecular and Cellular Biology.

[35]  Kohjiro Ueki,et al.  Increased insulin sensitivity in mice lacking p85β subunit of phosphoinositide 3-kinase , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Permutt,et al.  Islet β cell expression of constitutively active Akt1/PKBα induces striking hypertrophy, hyperplasia, and hyperinsulinemia , 2001 .

[37]  C. Kahn,et al.  Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic beta cells. , 2001, Molecular cell.

[38]  S. Aizawa,et al.  Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. , 2000, Diabetes.

[39]  Daniel A. Pollard,et al.  Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85α , 2000, Nature Genetics.

[40]  C. Burns,et al.  Signaling through the p38 and p42/44 mitogen-activated families of protein kinases in pancreatic beta-cell proliferation. , 2000, Biochemical and biophysical research communications.

[41]  S. Nagamatsu,et al.  Decreased expression of t-SNARE, syntaxin 1, and SNAP-25 in pancreatic beta-cells is involved in impaired insulin secretion from diabetic GK rat islets: restoration of decreased t-SNARE proteins improves impaired insulin secretion. , 1999, Diabetes.

[42]  C. Kahn,et al.  Tissue-Specific Knockout of the Insulin Receptor in Pancreatic β Cells Creates an Insulin Secretory Defect Similar to that in Type 2 Diabetes , 1999, Cell.

[43]  Y. Matsuzawa,et al.  Increased insulin sensitivity and hypoglycaemia in mice lacking the p85α subunit of phosphoinositide 3–kinase , 1999, Nature Genetics.

[44]  J. Backer,et al.  Regulation of the p85/p110 Phosphatidylinositol 3′-Kinase: Stabilization and Inhibition of the p110α Catalytic Subunit by the p85 Regulatory Subunit , 1998, Molecular and Cellular Biology.

[45]  I. Deary,et al.  Insulin resistance , 1996 .

[46]  J. Friedman,et al.  Abnormal splicing of the leptin receptor in diabetic mice , 1996, Nature.

[47]  C. Kahn,et al.  Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene , 1994, Nature.

[48]  T. Yagi,et al.  Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1 , 1994, Nature.

[49]  K. Hummel,et al.  The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL/KsJ and C57BL/6J strains , 1972, Biochemical Genetics.

[50]  Min Zhang,et al.  Total insulin and IGF-I resistance in pancreatic beta cells causes overt diabetes. , 2006, Nature genetics.

[51]  Y. Kido,et al.  Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass. , 2006, Nature genetics.

[52]  A. Charollais,et al.  Connexin36 and pancreatic beta-cell functions. , 2006, Archives of physiology and biochemistry.

[53]  C. Rhodes Type 2 diabetes-a matter of beta-cell life and death? , 2005, Science.

[54]  M. Stoffel,et al.  Reduced beta-cell mass and altered glucose sensing impair insulin-secretory function in betaIRKO mice. , 2004, American journal of physiology. Endocrinology and metabolism.

[55]  M. Stoffel,et al.  Reduced β-cell mass and altered glucose sensing impair insulin-secretory function in βIRKO mice , 2004 .

[56]  Joseph L Evans,et al.  Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? , 2003, Diabetes.

[57]  J. Klein,et al.  Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling. , 2003, The Journal of biological chemistry.

[58]  Robert A Rizza,et al.  Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. , 2003, Diabetes.

[59]  I. Goldfine,et al.  Are Oxidative StressActivated Signaling Pathways Mediators of Insulin Resistance and -Cell , 2003 .

[60]  M. Stoffel,et al.  beta-cell-specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter beta-cell mass. , 2002, Nature genetics.

[61]  E. Furth,et al.  Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBalpha. , 2001, Nature medicine.

[62]  M. Permutt,et al.  Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. , 2001, The Journal of clinical investigation.