Discrete-Time Modelling of Sigma-Delta Inspired Systems for MEMS

This chapter discusses a variety of system structures for microelectromechanical systems (MEMS) that employ a feedback loop inspired by sigma-delta modulation. Sigma-delta modulators are classic electronic circuits that implement data conversion. The feedback loop typical for sigma-delta modulation can be applied to actuate a MEMS device or control its state. The dynamics of such systems are described by a set of discrete-time equations (map). We show how these maps can be derived for different examples of MEMS and highlight the dynamics that are universal for all examples.

[1]  Norberto Fueyo,et al.  Low-cost thermal /spl Sigma/-/spl Delta/ air flow sensor , 2002 .

[2]  Elena Blokhina,et al.  MEMS with Σ - Δ type of feedback loop control as an iterative map , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[3]  Jie Sheng,et al.  Optimal filtering for multirate systems , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[4]  O. Feely,et al.  Dielectric Charge Control in Electrostatic MEMS Positioners/Varactors , 2012, Journal of Microelectromechanical Systems.

[5]  Sergio Bermejo,et al.  Low-cost thermal ??-? air flow sensor , 2002 .

[6]  Robert C. Hilborn,et al.  Chaos and Nonlinear Dynamics , 2000 .

[7]  E. Gusev,et al.  Review of Device and Reliability Physics of Dielectrics in Electrostatically Driven MEMS Devices , 2009, IEEE Transactions on Device and Materials Reliability.

[8]  Leon O. Chua,et al.  The effect of integrator leak in Sigma - Delta modulation , 1991 .

[9]  Orla Feely,et al.  Control of MEMS Vibration Modes With Pulsed Digital Oscillators: Part I—Theory , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Kofi A. A. Makinwa,et al.  A smart wind sensor using thermal sigma-delta modulation techniques , 2002 .

[11]  Michael Kraft Closed loop digital accelerometer employing oversampling conversion , 1997 .

[12]  C. Goldsmith,et al.  Superposition Model for Dielectric Charging of RF MEMS Capacitive Switches Under Bipolar Control-Voltage Waveforms , 2007, IEEE Transactions on Microwave Theory and Techniques.

[13]  Jérôme Juillard,et al.  Digital self-calibration method for MEMS sensors , 2005, IEEE Transactions on Instrumentation and Measurement.

[14]  Atsushi Suzuki,et al.  An RF MEMS Variable Capacitor with Intelligent Bipolar Actuation , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[15]  G. Temes Delta-sigma data converters , 1994 .

[16]  Jung-Chang Hsu,et al.  Effect of tip length and normal and lateral contact stiffness on the flexural vibration responses of atomic force microscope cantilevers , 2004 .

[17]  J. Deane,et al.  PIECEWISE CONTRACTIONS ARE ASYMPTOTICALLY PERIODIC , 2008 .

[18]  Alina Voda,et al.  Controller design for a closed-loop micromachined accelerometer , 2007 .

[19]  Orla Feely Nonlinear dynamics of discrete-time circuits: A survey , 2007, Int. J. Circuit Theory Appl..

[20]  Arthur van Roermund,et al.  Look-Ahead Based Sigma-Delta Modulation , 2011 .

[21]  S. Beeby,et al.  MEMS Mechanical Sensors , 2004 .

[22]  L. O. Chua,et al.  The effect of integrator leak in Σ-Δ modulation , 1991 .

[23]  Kofi A. A. Makinwa,et al.  A wind-sensor with integrated interface electronics , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[24]  T. Chen,et al.  Study of the sensitivity of the first four flexural modes of an AFM cantilever with a sidewall probe. , 2008, Ultramicroscopy.

[25]  Manuel Domínguez Pumar,et al.  Analysis of the Σ-Δ pulsed digital oscillator for MEMS. , 2005 .

[26]  S. Senturia Microsystem Design , 2000 .

[27]  James D. Meiss,et al.  Neimark-Sacker Bifurcations in Planar, Piecewise-Smooth, Continuous Maps , 2008, SIAM J. Appl. Dyn. Syst..

[28]  Orla Feely,et al.  Discontinuous piecewise‐linear discrete‐time dynamics – maps with gaps in electronic systems , 2011 .

[29]  C. Scheffer,et al.  Tactile Sensing Using Force Sensing Resistors and a Super-Resolution Algorithm , 2009, IEEE Sensors Journal.

[30]  Jordi Ricart,et al.  General Dynamics of Pulsed Digital Oscillators , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  L. Richard Carley,et al.  Electromechanical /spl Delta//spl Sigma/ modulation with high-Q micromechanical accelerometers and pulse density modulated force feedback , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  L. Carley,et al.  Electromechanical ΔΣ modulation with high-Q micromechanical accelerometers and pulse density modulated force feedback. , 2006 .

[33]  J. Ricart,et al.  A Novel$Sigma$–$Delta$Pulsed Digital Oscillator (PDO) for MEMS , 2005, IEEE Sensors Journal.

[34]  R. Engelbrecht,et al.  DIGEST of TECHNICAL PAPERS , 1959 .

[35]  Orla Feely,et al.  Pulsed Digital Oscillators for Electrostatic MEMS , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[36]  Orla Feely,et al.  Limit Cycles in a MEMS Oscillator , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[37]  P. Rombouts,et al.  A Closed-Loop Digitally Controlled MEMS Gyroscope With Unconstrained Sigma-Delta Force-Feedback , 2009, IEEE Sensors Journal.

[38]  J. Romeral,et al.  A hot film anemometer for the Martian atmosphere , 2008 .

[39]  Michael Kraft,et al.  Closed Loop Silicon Accelerometers , 1998 .

[40]  Robert C. Hilborn,et al.  Chaos And Nonlinear Dynamics: An Introduction for Scientists and Engineers , 1994 .

[41]  Orla Feely,et al.  Delta-Sigma Control of Dielectric Charge for Contactless Capacitive MEMS , 2014, Journal of Microelectromechanical Systems.

[42]  Orla Feely,et al.  Dynamics of the MEMS pulsed digital oscillator with multiple delays in the feedback loop , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[43]  Alberto Corigliano,et al.  A Resonant Microaccelerometer With High Sensitivity Operating in an Oscillating Circuit , 2010, Journal of Microelectromechanical Systems.

[44]  Orla Feely,et al.  Control of MEMS Vibration Modes With Pulsed Digital Oscillators—Part II: Simulation and Experimental Results , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[45]  Jérôme Juillard,et al.  Using Tsypkin's Approach for the Study of a Class of Mixed-Signal Nonlinear Systems , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[46]  Michael Schanz,et al.  Multi-parametric bifurcations in a piecewise–linear discontinuous map , 2006 .

[47]  W. M. Van Spengen,et al.  Capacitive RF MEMS switch dielectric charging and reliability: a critical review with recommendations , 2012 .

[48]  Stepan Lucyszyn,et al.  Advanced RF MEMS , 2010 .

[49]  R. Schreier,et al.  Delta-sigma data converters : theory, design, and simulation , 1997 .

[50]  E. Figueras,et al.  Application of pulsed digital oscillators to volatile organic compounds sensing , 2008 .

[51]  William Redman-White,et al.  Force feedback linearization for higher-order electromechanical sigma-delta modulators , 2006 .

[52]  Roger T. Howe,et al.  Surface micromachined accelerometers , 1996 .