Colloidal Cs1-xFAxPbI3 quantum dots derived from ligand-assisted cation exchange for record-efficiency and segregation-free solar cells

Mengmeng Hao, Yang Bai*, Stefan Zeiske, Long Ren, Junxian Liu, Yongbo Yuan, Nasim Zarrabi, Ningyan Cheng, Mehri Ghasemi, Peng Chen, Shanshan Ding, Miaoqiang Lyu, Dongxu He, Jung Ho Yun, Yi Du, Yun Wang, Ardalan Armin, Paul Meredith, Gang Liu, Hui-Ming Cheng, Lianzhou Wang* Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology and School of Chemical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia. Department of Physics, Swansea University, Swansea, SA2 8PP, Wales, UK. Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, New South Wales 2500, Australia. School of Environment and Science, Centre for Clean Environment and Energy, Griffith University, Gold Coast, Queensland 4222, Australia. Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, 410083, PR China. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, 1001 Xueyuan Road, Shenzhen 518055, China Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey GU2 7XH, UK

[1]  Bryon W. Larson,et al.  Enhanced Open-Circuit Voltage of Wide-Bandgap Perovskite Photovoltaics by Using Alloyed (FA1–xCsx)Pb(I1–xBrx)3 Quantum Dots , 2019, ACS Energy Letters.

[2]  T. Unold,et al.  The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells , 2019, Energy & Environmental Science.

[3]  Bryon W. Larson,et al.  High efficiency perovskite quantum dot solar cells with charge separating heterostructure , 2019, Nature Communications.

[4]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[5]  E. Barea,et al.  Controlling the Phase Segregation in Mixed Halide Perovskites through Nanocrystal Size , 2018, ACS energy letters.

[6]  Rongrong Cheacharoen,et al.  Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. , 2018, Chemical reviews.

[7]  Xingyu Gao,et al.  Band-Aligned Polymeric Hole Transport Materials for Extremely Low Energy Loss α-CsPbI3 Perovskite Nanocrystal Solar Cells , 2018, Joule.

[8]  Anders Hagfeldt,et al.  Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture , 2018, Science.

[9]  Jiangyu Li,et al.  Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite , 2018, Nature Communications.

[10]  M. Grätzel,et al.  Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals , 2018, Nature Communications.

[11]  Yizheng Jin,et al.  Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures , 2018, Nature.

[12]  L. Quan,et al.  Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent , 2018, Nature.

[13]  Ashley R. Marshall,et al.  Perovskite Quantum Dot Photovoltaic Materials beyond the Reach of Thin Films: Full-Range Tuning of A-Site Cation Composition. , 2018, ACS nano.

[14]  Rui Wang,et al.  Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells , 2018, Joule.

[15]  J. Bünzli,et al.  Near-infrared-triggered photon upconversion tuning in all-inorganic cesium lead halide perovskite quantum dots , 2018, Nature Communications.

[16]  F. De Angelis,et al.  First-Principles Modeling of Defects in Lead Halide Perovskites: Best Practices and Open Issues , 2018, ACS Energy Letters.

[17]  Ashley R. Marshall,et al.  Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics. , 2018, Journal of the American Chemical Society.

[18]  M. Grätzel,et al.  Phase Segregation in Potassium-Doped Lead Halide Perovskites from 39K Solid-State NMR at 21.1 T. , 2018, Journal of the American Chemical Society.

[19]  Richard M. Maceiczyk,et al.  Exploration of Near-Infrared-Emissive Colloidal Multinary Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform , 2018, ACS nano.

[20]  A. Barker,et al.  Iodine chemistry determines the defect tolerance of lead-halide perovskites , 2018 .

[21]  Q. Akkerman,et al.  Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals , 2018, Nature Materials.

[22]  David T. Limmer,et al.  Thermochromic halide perovskite solar cells , 2018, Nature Materials.

[23]  A. Emwas,et al.  Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes. , 2018, Journal of the American Chemical Society.

[24]  Hongwei Song,et al.  Cerium and Ytterbium Codoped Halide Perovskite Quantum Dots: A Novel and Efficient Downconverter for Improving the Performance of Silicon Solar Cells , 2017, Advanced materials.

[25]  Matthew C. Beard,et al.  Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells , 2017, Science Advances.

[26]  P. Kamat,et al.  Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites , 2017, Nature Communications.

[27]  M. Grätzel,et al.  Cation Dynamics in Mixed-Cation (MA)x(FA)1-xPbI3 Hybrid Perovskites from Solid-State NMR. , 2017, Journal of the American Chemical Society.

[28]  X. You,et al.  Sequential Introduction of Cations Deriving Large-Grain Csx FA1-x PbI3 Thin Film for Planar Hybrid Solar Cells: Insight into Phase-Segregation and Thermal-Healing Behavior. , 2017, Small.

[29]  Antonietta Guagliardi,et al.  Dismantling the “Red Wall” of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals , 2017, ACS nano.

[30]  Anders Hagfeldt,et al.  Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells , 2017 .

[31]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[32]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[33]  Song Jin,et al.  Screening in crystalline liquids protects energetic carriers in hybrid perovskites , 2016, Science.

[34]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[35]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[36]  Song Jin,et al.  Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. , 2015, Nature materials.

[37]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[38]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[39]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[40]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[41]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[42]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[43]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[44]  Ute Resch-Genger,et al.  Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties , 2009 .

[45]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[46]  Kazuo Fueki,et al.  Ionic conduction of the perovskite-type halides , 1983 .

[47]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[48]  Philip Schulz,et al.  Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability , 2018 .