A Clustering-Based Niching Framework for the Approximation of Equivalent Pareto-Subsets

In many optimization problems in practice, multiple objectives have to be optimized at the same time. Some multi-objective problems are characterized by multiple connected Pareto-sets at different parts in decision space — also called equivalent Pareto-subsets. We assume that the practitioner wants to approximate all Pareto-subsets to be able to choose among various solutions with different characteristics. In this work, we propose a clustering-based niching framework for multi-objective population-based approaches that allows to approximate equivalent Pareto-subsets. Iteratively, the clustering process assigns the population to niches, and the multi-objective optimization process concentrates on each niche independently. Two exemplary hybridizations, rake selection and DBSCAN, as well as SMS-EMOA and kernel density clustering demonstrate that the niching framework allows enough diversity to detect and approximate equivalent Pareto-subsets.

[1]  Eckart Zitzler,et al.  Integrating decision space diversity into hypervolume-based multiobjective search , 2010, GECCO '10.

[2]  Günter Rudolph,et al.  Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets , 2007, EMO.

[3]  Anne Auger,et al.  Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point , 2009, FOGA '09.

[4]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[5]  Ofer M. Shir,et al.  Enhancing Decision Space Diversity in Evolutionary Multiobjective Algorithms , 2009, EMO.

[6]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[7]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[8]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[9]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[10]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[11]  Daniel A. Keim,et al.  A General Approach to Clustering in Large Databases with Noise , 2003, Knowledge and Information Systems.

[12]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[13]  Gary B. Lamont,et al.  A Statistical Comparison of Multiobjective Evolutionary Algorithms Including the MOMGA-II , 2001, EMO.

[14]  Oliver Kramer,et al.  Rake Selection: A Novel Evolutionary Multi-Objective Optimization Algorithm , 2009, KI.

[15]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[16]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[17]  Oliver Kramer,et al.  Acceleration of DBSCAN-Based Clustering with Reduced Neighborhood Evaluations , 2010, KI.

[18]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[19]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[20]  Kalyanmoy Deb,et al.  Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization , 2008, Eur. J. Oper. Res..

[21]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[22]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[23]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[24]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[25]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[26]  V. Pareto,et al.  Vilfredo Pareto. Cours d’Économie Politique , 1897 .

[27]  Aravind Seshadri,et al.  A FAST ELITIST MULTIOBJECTIVE GENETIC ALGORITHM: NSGA-II , 2000 .

[28]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[29]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[30]  Qingfu Zhang,et al.  Approximating the Set of Pareto-Optimal Solutions in Both the Decision and Objective Spaces by an Estimation of Distribution Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[31]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[32]  Mike Preuss,et al.  Decision Space Diversity Can Be Essential for Solving Multiobjective Real-World Problems , 2008, MCDM.

[33]  F. Y. Edgeworth Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences , 2007 .

[34]  O. M. Shir Niching in derandomized evolution strategies and its applications in quantum control , 2008 .

[35]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[36]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[37]  Oliver Kramer,et al.  DBSCAN-based multi-objective niching to approximate equivalent pareto-subsets , 2010, GECCO '10.

[38]  Samir W. Mahfoud Crossover interactions among niches , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[39]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[40]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[41]  Tobias Friedrich,et al.  The maximum hypervolume set yields near-optimal approximation , 2010, GECCO '10.