A Clustering-Based Niching Framework for the Approximation of Equivalent Pareto-Subsets
暂无分享,去创建一个
[1] Eckart Zitzler,et al. Integrating decision space diversity into hypervolume-based multiobjective search , 2010, GECCO '10.
[2] Günter Rudolph,et al. Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets , 2007, EMO.
[3] Anne Auger,et al. Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point , 2009, FOGA '09.
[4] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[5] Ofer M. Shir,et al. Enhancing Decision Space Diversity in Evolutionary Multiobjective Algorithms , 2009, EMO.
[6] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .
[7] Nicola Beume,et al. SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..
[8] Charles Gide,et al. Cours d'économie politique , 1911 .
[9] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[10] Hans-Paul Schwefel,et al. Evolution strategies – A comprehensive introduction , 2002, Natural Computing.
[11] Daniel A. Keim,et al. A General Approach to Clustering in Large Databases with Noise , 2003, Knowledge and Information Systems.
[12] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[13] Gary B. Lamont,et al. A Statistical Comparison of Multiobjective Evolutionary Algorithms Including the MOMGA-II , 2001, EMO.
[14] Oliver Kramer,et al. Rake Selection: A Novel Evolutionary Multi-Objective Optimization Algorithm , 2009, KI.
[15] David E. Goldberg,et al. A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.
[16] Nicola Beume,et al. An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.
[17] Oliver Kramer,et al. Acceleration of DBSCAN-Based Clustering with Reduced Neighborhood Evaluations , 2010, KI.
[18] Marco Laumanns,et al. SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .
[19] Gary B. Lamont,et al. Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .
[20] Kalyanmoy Deb,et al. Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization , 2008, Eur. J. Oper. Res..
[21] Gary B. Lamont,et al. Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.
[22] Peter J. Fleming,et al. Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.
[23] Goldberg,et al. Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.
[24] Samir W. Mahfoud. Niching methods for genetic algorithms , 1996 .
[25] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[26] V. Pareto,et al. Vilfredo Pareto. Cours d’Économie Politique , 1897 .
[27] Aravind Seshadri,et al. A FAST ELITIST MULTIOBJECTIVE GENETIC ALGORITHM: NSGA-II , 2000 .
[28] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[29] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[30] Qingfu Zhang,et al. Approximating the Set of Pareto-Optimal Solutions in Both the Decision and Objective Spaces by an Estimation of Distribution Algorithm , 2009, IEEE Transactions on Evolutionary Computation.
[31] K. Dejong,et al. An analysis of the behavior of a class of genetic adaptive systems , 1975 .
[32] Mike Preuss,et al. Decision Space Diversity Can Be Essential for Solving Multiobjective Real-World Problems , 2008, MCDM.
[33] F. Y. Edgeworth. Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences , 2007 .
[34] O. M. Shir. Niching in derandomized evolution strategies and its applications in quantum control , 2008 .
[35] Kalyanmoy Deb,et al. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.
[36] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[37] Oliver Kramer,et al. DBSCAN-based multi-objective niching to approximate equivalent pareto-subsets , 2010, GECCO '10.
[38] Samir W. Mahfoud. Crossover interactions among niches , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.
[39] Kalyanmoy Deb,et al. An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.
[40] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[41] Tobias Friedrich,et al. The maximum hypervolume set yields near-optimal approximation , 2010, GECCO '10.