Wave atoms and time upscaling of wave equations
暂无分享,去创建一个
[1] Ru-Shan Wu,et al. Generalization of the phase-screen approximation for the scattering of acoustic waves , 2000 .
[2] Peter D. Lax,et al. Asymptotic solutions of oscillatory initial value problems , 1957 .
[3] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[4] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[5] Hart F. Smith. A parametrix construction for wave equations with $C^{1,1}$ coefficients , 1998 .
[6] Lexing Ying,et al. The phase flow method , 2006, J. Comput. Phys..
[7] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[8] S. Jaffard. Wavelet methods for fast resolution of elliptic problems , 1992 .
[9] C. Loan,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .
[10] A. G. Flesia,et al. Digital Implementation of Ridgelet Packets , 2003 .
[11] S. Mallat,et al. A wavelet based space-time adaptive numerical method for partial differential equations , 1990 .
[12] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[13] Laurent Demanet,et al. Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..
[14] Ronald R. Coifman,et al. Efficient Computation of Oscillatory Integrals via Adaptive Multiscale Local Fourier Bases , 2000 .
[15] L. Hörmander,et al. Fourier integral operators. II , 1972 .
[16] E. Candès,et al. Curvelets and Fourier Integral Operators , 2003 .
[17] Emmanuel J. Cand. Harmonic Analysis of Neural Networks , 1998 .
[18] Y. Meyer,et al. Wavelets: Calderón-Zygmund and Multilinear Operators , 1997 .
[19] L. Hörmander. Fourier integral operators. I , 1995 .
[20] Charles Fefferman,et al. Wave packets and fourier integral operators , 1978 .
[21] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[22] F. Herrmann,et al. Sparsity- and continuity-promoting seismic image recovery with curvelet frames , 2008 .
[23] Felix J. Herrmann,et al. Seismic denoising with nonuniformly sampled curvelets , 2006, Computing in Science & Engineering.
[24] W. Hackbusch. A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.
[25] L. Hörmander. The Analysis of Linear Partial Differential Operators III , 2007 .
[26] Yu. V. Babenko,et al. Pointwise Inequalities of Landau–Kolmogorov Type for Functions Defined on a Finite Segment , 2001 .
[27] Huub Douma,et al. Wave-character Preserving Pre-stack Map Migration Using Curvelets , 2004 .
[28] CohenAlbert,et al. Adaptive wavelet methods for elliptic operator equations , 2001 .
[29] Elias M. Stein,et al. Regularity properties of Fourier integral operators , 1991 .
[30] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[31] Vladimir I. Clue. Harmonic analysis , 2004, 2004 IEEE Electro/Information Technology Conference.
[32] E. Candès,et al. Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .
[33] W. Ziemer. Weakly differentiable functions , 1989 .
[34] E. Candès. Harmonic Analysis of Neural Networks , 1999 .
[35] Charles Fefferman,et al. A note on spherical summation multipliers , 1973 .
[36] H. Helson. Harmonic Analysis , 1983 .
[37] Martin Greiner,et al. Wavelets , 2018, Complex..
[38] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[39] L. Villemoes. Wavelet packets with uniform time-frequency localization , 2002 .
[40] G. Beylkin,et al. Wave propagation using bases for bandlimited functions , 2005 .
[41] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[42] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[43] L. Demanet. Curvelets, Wave Atoms, and Wave Equations , 2006 .
[44] Hart F. Smith. A Hardy space for Fourier integral operators , 1998 .
[45] L. Demanet,et al. Wave atoms and sparsity of oscillatory patterns , 2007 .
[46] Eric Séré. Localisation fréquentielle des paquets d'ondelettes , 1995 .
[47] Stanley Osher,et al. Fast Wavelet Based Algorithms for Linear Evolution Equations , 1994, SIAM J. Sci. Comput..
[48] E. Candès,et al. The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.