Satisfiability Checking for PC(ID)

The logic FO(ID) extends classical first order logic with inductive definitions. This paper studies the satisifiability problem for PC(ID), its propositional fragment. We develop a framework for model generation in this logic, present an algorithm and prove its correctness. As FO(ID) is an integration of classical logic and logic programming, our algorithm integrates techniques from SAT and ASP. We report on a prototype system, called MidL, experimentally validating our approach.

[1]  Luís Moniz Pereira,et al.  Computational Logic — CL 2000 , 2000, Lecture Notes in Computer Science.

[2]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[3]  Graham Wrightson,et al.  Automation of reasoning--classical papers on computational logic , 2012 .

[4]  Ilkka Niemelä,et al.  Smodels: A System for Answer Set Programming , 2000, ArXiv.

[5]  Miroslaw Truszczynski,et al.  dcs: An Implementation of DATALOG with Constraints , 2000, ArXiv.

[6]  Eugenia Ternovska,et al.  Reducing Inductive Definitions to Propositional Satisfiability , 2005, ICLP.

[7]  Eljas Soisalon-Soininen,et al.  On Finding the Strongly Connected Components in a Directed Graph , 1994, Inf. Process. Lett..

[8]  Krzysztof R. Apt,et al.  Logic Programming , 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[9]  Marc Denecker,et al.  Knowledge representation and reasoning in incomplete logic programming , 1993 .

[10]  Frank Wolter,et al.  Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.

[11]  Marc Denecker,et al.  Extending Classical Logic with Inductive Definitions , 2000, Computational Logic.

[12]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[13]  Konstantinos Sagonas,et al.  XSB as an efficient deductive database engine , 1994, SIGMOD '94.

[14]  Maarten Mariën,et al.  On the Relation Between ID-Logic and Answer Set Programming , 2004, JELIA.

[15]  Hector J. Levesque,et al.  Competence in Knowledge Representation , 1982, AAAI.

[16]  Anil Nerode,et al.  Justification semantics: a unifying framework for the semantics of Logic Programs , 1993 .

[17]  Fangzhen Lin,et al.  ASSAT: computing answer sets of a logic program by SAT solvers , 2002, Artif. Intell..

[18]  John S. Schlipf,et al.  Computing Well-founded Semantics Faster , 1995, LPNMR.

[19]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[20]  Allen Van Gelder,et al.  The Alternating Fixpoint of Logic Programs with Negation , 1993, J. Comput. Syst. Sci..

[21]  J. P. Marques,et al.  GRASP : A Search Algorithm for Propositional Satisfiability , 1999 .

[22]  Miroslaw Truszczynski,et al.  On the Problem of Computing the Well-Founded Semantics , 2000, Computational Logic.

[23]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[24]  Marc Denecker,et al.  The Well-Founded Semantics Is the Principle of Inductive Definition , 1998, JELIA.

[25]  J. W. LLOYD,et al.  Making Prolog more Expressive , 1984, J. Log. Program..

[26]  Eugenia Ternovska,et al.  Inductive situation calculus , 2004, Artif. Intell..

[27]  Gerald Pfeifer,et al.  System Description: DLV , 2001, LPNMR.

[28]  David G. Mitchell,et al.  A Framework for Representing and Solving NP Search Problems , 2005, AAAI.

[29]  Sharad Malik,et al.  Efficient conflict driven learning in a Boolean satisfiability solver , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[30]  Victor W. Marek,et al.  Logic programming revisited , 2001, ACM Trans. Comput. Log..

[31]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[32]  Lawrence Ryan Efficient algorithms for clause-learning SAT solvers , 2004 .

[33]  Yuliya Lierler,et al.  Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-tight Programs , 2004, LPNMR.