On the No-Counterexample Interpretation

In [15],[16] Kreisel introduced the no-counterexample interpretation (n.c.i.) of Peano arithmetic. In particular he proved, using a complicated e-substitution method (due to W. Ackermann), that for every theorem A (A prenex) of first-order Peano arithmetic PA one can find ordinal recursive functionals ΦA of order type < e0 which realize the Herbrand normal form A of A. Subsequently more perspicuous proofs of this fact via functional interpretation (combined with normalization) and cut-elimination where found. These proofs however do not carry out the n.c.i. as a local proof interpretation and don’t respect the modus ponens on the level of the n.c.i. of formulas A and A → B. Closely related to this phenomenon is the fact that both proofs do not establish the condition (δ) and – at least not constructively – (γ) which are part of the definition of an ‘interpretation of a formal system’ as formulated in [15]. In this paper we determine the complexity of the n.c.i. of the modus ponens rule for (i) PA-provable sentences, (ii) for arbitrary sentences A,B ∈ L(PA) uniformly in functionals satisfying the n.c.i. of (prenex normal forms of) A and A→ B, and (iii) for arbitrary A,B ∈ L(PA) pointwise in given α(< e0)-recursive functionals satisfying the n.c.i. of A and A→ B. ∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.

[1]  Georg Kreisel,et al.  Transfinite induction and bar induction of types zero and one, and the role of continuity in intuitionistic analysis , 1966, Journal of Symbolic Logic.

[2]  William W. Tait,et al.  Normal derivability in classical logic , 1968 .

[3]  Wilhelm Ackermann,et al.  Zur Widerspruchsfreiheit der Zahlentheorie , 1940 .

[4]  Jean-Baptiste Lully,et al.  The collected works , 1996 .

[5]  Jon Barwise,et al.  The Syntax and Semantics of Infinitary Languages , 1968 .

[6]  Helmut Schwichtenberg,et al.  On bar recursion of types 0 and 1 , 1979, Journal of Symbolic Logic.

[7]  Georg Kreisel,et al.  On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.

[8]  Ian Stark Names, Equations, Relations: Practical Ways to Reason about new , 1997, TLCA.

[9]  W. Buchholz Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-theoretical Studies , 1981 .

[10]  Alessandro Panconesi,et al.  Fast Distributed Algorithms for Brooks-Vizing Colourings (Extended Abstract) , 1997 .

[11]  Georg Kreisel,et al.  A survey of proof theory , 1968, Journal of Symbolic Logic.

[12]  Solomon Feferman,et al.  Theories of Finite Type Related to Mathematical Practice , 1977 .

[13]  H. Schwichtenberg Proof Theory: Some Applications of Cut-Elimination , 1977 .

[14]  Georg Kreisel,et al.  Functions, Ordinals, Species* , 1968 .

[15]  William W. Tait,et al.  The substitution method , 1965, Journal of Symbolic Logic.

[16]  Alessandro Panconesi,et al.  On the distributed complexity of computing maximal matchings , 1997, SODA '98.

[17]  S. C. Kleene,et al.  Recursive functionals and quantifiers of finite types. II , 1959 .

[18]  A. Nerode,et al.  Review: S. C. Kleene, Recursive Functionals and Quantifiers of Finite Types I , 1962 .

[19]  G. Gentzen Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .

[20]  William A. Howard,et al.  Ordinal analysis of simple cases of bar recursion , 1981, Journal of Symbolic Logic.

[21]  Glynn Winskel,et al.  A theory of recursive domains with applications to concurrency , 1997, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[22]  H. Schwichtenberg,et al.  Einige Anwendungen von unendlichen Termen und Wertfunktionalen , 1973 .

[23]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[24]  J. Girard Proof Theory and Logical Complexity , 1989 .

[25]  Georg Kreisel,et al.  Reflection Principles and Their Use for Establishing the Complexity of Axiomatic Systems , 1968 .

[26]  R. E. Vesley Review: Clifford Spector, Provably Recursive Functionals of Analysis: A Consistency Proof of Analysis by an Extension of Principles Formulated in Current Intuitionistic Mathematics , 1967 .

[27]  W. A. Howard,et al.  Functional interpretation of bar induction by bar recursion , 1968 .

[28]  Charles D. Parsons,et al.  On n-quantifier induction , 1972, Journal of Symbolic Logic.

[29]  Georg Kreisel,et al.  Mathematical significance of consistency proofs , 1958, Journal of Symbolic Logic.

[30]  C. Spector Provably recursive functionals of analysis: a consistency proof of analysis by an extension of princ , 1962 .

[31]  Glynn Winskel,et al.  Relational Semantics of Non-Deterministic Dataflow , 1997 .

[32]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[33]  B. Scarpellini A model for barrecursion of higher types , 1971 .