Optimization problem with normally distributed uncertain parameters

The issue of chemical process optimization when at the operation stage the design specification should be met with some probability and the control variables can be changed has been considered. A common approach for solving the broad class of optimization problems with normally distributed uncertain parameters were developed. This class includes the one-stage and two-stage optimization problems with chance constraints. This approach is based on approximate transformation of chance constraints into deterministic ones. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2471–2484, 2013

[1]  Pu Li,et al.  Chance constrained programming approach to process optimization under uncertainty , 2008, Comput. Chem. Eng..

[2]  Costas D. Maranas,et al.  Optimal molecular design under property prediction uncertainty , 1997 .

[3]  Gintaras V. Reklaitis,et al.  The design of multiproduct batch plants under uncertainty with staged expansion , 1989 .

[4]  G. Ostrovsky,et al.  Large-scale system optimization , 1986 .

[5]  J. Betts,et al.  A sparse nonlinear optimization algorithm , 1994 .

[6]  Fernando P. Bernardo,et al.  Robust optimization framework for process parameter and tolerance design , 1998 .

[7]  Ignacio E. Grossmann,et al.  Optimal process design under uncertainty , 1983 .

[8]  Dj.B. Petkovski Application of ϵ-method to the class of linear systems applicable in chemical engineering , 1978 .

[9]  U. Diwekar,et al.  Efficient sampling technique for optimization under uncertainty , 1997 .

[10]  Lorenz T. Biegler,et al.  Optimal process design with model parameter uncertainty and process variability , 2003 .

[11]  Fernando P. Bernardo,et al.  Quality costs and robustness criteria in chemical process design optimization , 2001 .

[12]  C. Floudas,et al.  Active constraint strategy for flexibility analysis in chemical processes , 1987 .

[13]  Fernando P. Bernardo,et al.  Integration and Computational Issues in Stochastic Design and Planning Optimization Problems , 1999 .

[14]  Yu.M. Volin,et al.  Sensitivity calculation methods for complex chemical systems—1: algorithmization , 1981 .

[15]  N. N. Ziyatdinov,et al.  One-stage optimization problem with chance constraints , 2010 .

[16]  M. Wendt,et al.  Nonlinear Chance-Constrained Process Optimization under Uncertainty , 2002 .

[17]  Efstratios N. Pistikopoulos,et al.  Stochastic optimization based algorithms for process synthesis under uncertainty , 1998 .

[18]  Ignacio E. Grossmann,et al.  An index for operational flexibility in chemical process design. Part I: Formulation and theory , 1985 .

[19]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[20]  Ernst Dieter Gilles,et al.  A model library for membrane reactors implemented in the process modelling tool PROMoT , 2004, Comput. Chem. Eng..

[21]  Efstratios N. Pistikopoulos,et al.  Global Optimization for Stochastic Planning, Scheduling and Design Problems , 1996 .

[22]  G. M. Ostrovsky,et al.  An approach to solving a two-stage optimization problem under uncertainty , 1997 .

[23]  Zdravko Kravanja,et al.  A strategy for MINLP synthesis of flexible and operable processes , 2004, Comput. Chem. Eng..

[24]  Fernando P. Bernardo,et al.  Robustness criteria in process design optimization under uncertainty , 1999 .

[25]  Sebastian Engell,et al.  Modeling and solving real-time scheduling problems by stochastic integer programming , 2004, Comput. Chem. Eng..