Pyroelectric and dielectric energy conversion – A new view of the old problem

[1]  Xavier Moya,et al.  Too cool to work , 2015, Nature Physics.

[2]  S. Trolier-McKinstry,et al.  Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion , 2014 .

[3]  Bikram Bhatia,et al.  High-frequency thermal-electrical cycles for pyroelectric energy conversion , 2014 .

[4]  D. Viehland,et al.  Publisher's Note: Temperature-induced and electric-field-induced phase transitions in rhombohedral Pb(In 1 /2 Nb 1 /2 )O 3 -Pb(Mg 1 /3 Nb 2 /3 )O 3 -PbTiO 3 ternary single crystals [Phys. Rev. B 90, 134107 (2014)] , 2014 .

[5]  D. Viehland,et al.  Temperature-induced and electric-field-induced phase transitions in rhombohedral Pb ( In 1 / 2 Nb 1 / 2 ) O 3 − Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 − PbTiO 3 ternary single crystals , 2014 .

[6]  N. Smith,et al.  Experimentally validated finite element model of electrocaloric multilayer ceramic structures , 2014 .

[7]  X. Moya,et al.  Caloric materials near ferroic phase transitions. , 2014, Nature materials.

[8]  Marko Ožbolt,et al.  Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives , 2014 .

[9]  S. Mohammadi,et al.  Electrocaloric Response of Ferroelectric Material Applicable as Electrothermal Transducer , 2013 .

[10]  Xavier Moya,et al.  The Electrocaloric Efficiency of Ceramic and Polymer Films , 2013, Advanced materials.

[11]  Christopher S. Lynch,et al.  Pyroelectric waste heat energy harvesting using relaxor ferroelectric 8/65/35 PLZT and the Olsen cycle , 2012 .

[12]  N. Mathur,et al.  Electrocaloric Materials for Cooling Applications , 2012 .

[13]  R. Chukka,et al.  Investigations of Cooling Efficiencies in Solid-State Electrocaloric Device , 2012 .

[14]  A. Srivastava,et al.  Structural, Dielectric And Electrical Properties Of Lead Zirconate Titanate And CaCu3Ti4O12 ceramic Composite , 2011 .

[15]  Laurent Pilon,et al.  Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle for waste heat energy harvesting , 2010 .

[16]  S. Karmanenko,et al.  Thermodynamic estimation of cooling efficiency using an electrocaloric solid-state line , 2010 .

[17]  H. Goldsmid,et al.  Introduction to Thermoelectricity , 2010 .

[18]  D. Guyomar,et al.  Pyroelectric energy conversion: Optimization principles , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[19]  J. Siqueiros,et al.  Specific heat anomalies at 37, 105 and 455 K in SrTiO3:Pr , 2008 .

[20]  B. Vodungbo,et al.  希釈磁性酸化物の構造的磁気的分光法的な研究:CoドーピングされたCeO2-δ , 2008 .

[21]  Jiayue Xu,et al.  Thermal properties of lead germanate single crystals grown by the vertical Bridgman method , 2005 .

[22]  S. Lang Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool , 2005 .

[23]  C-H. Solterbeck,et al.  Pyroelectric and piezoelectric properties of thick PZT films produced by a new sol-gel route , 2005 .

[24]  X. Tan,et al.  The morphotropic phase boundary and dielectric properties of the xPb(Zr1∕2Ti1∕2)O3-(1−x)Pb(Ni1∕3Nb2∕3)O3 perovskite solid solution , 2004 .

[25]  V. Zaporojtchenko,et al.  Dielectric and pyroelectric properties of PZFNT/PZT bimorph thin films , 2003 .

[26]  Rex Watton,et al.  Pyroelectric Materials and Devices , 2001 .

[27]  S. Lang,et al.  Pyroelectricity: Fundamentals and applications , 2001 .

[28]  K. Ćwikiel,et al.  The influence of a transverse electric field on the low-frequency dispersion in triglycine sulphate , 2000 .

[29]  J. Dziedzic STUDIES OF PERMITTIVITY IN THE TRIGLICINIUM SULPHATE CRYSTALS DOPED WITH CHROMIUM IONS AS A FUNCTION OF TEMPERATURE AND ELECTRIC FIELD , 2000 .

[30]  J. Portelles,et al.  Diffuse phase transition in (Na, Bi)-doped PbSnxTi1-xO3 ferroelectric ceramics , 1999 .

[31]  A. Molak,et al.  Effect of uniaxial pressure on the ferroelectric phase transition in Pb5Ge3)11 , 1999 .

[32]  B. Strukov,et al.  Ferroelectric Phenomena in Crystals: Physical Foundations , 1998 .

[33]  Pawlik,et al.  Scaling in ferroelectrics with critical points induced by an electric field. , 1994, Physical review. B, Condensed matter.

[34]  K. Roleder,et al.  The defect-induced ferroelectric phase in thin PbZrO3 single crystals , 1989 .

[35]  Roger W. Whatmore,et al.  Pyroelectric devices and materials , 1986 .

[36]  J. Briscoe,et al.  Pyroelectric conversion cycles , 1985 .

[37]  J. Bednorz,et al.  Sr 1-x Ca x TiO 3 : An XY Quantum Ferroelectric with Transition to Randomness , 1984 .

[38]  E. Putley The applications of pyroelectric devices , 1981 .

[39]  R. Poprawski,et al.  Influence of pyroelectric charges on the degree of polarization of TGS crystals , 1981 .

[40]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[41]  E. Putley Chapter 7 The Pyroelectric Detector—An Update , 1977 .

[42]  J. Burfoot,et al.  Grain-size and pressure effects on the dielectric and piezoelectric properties of hot-pressed PZT-5 , 1974 .

[43]  E. T. Keve,et al.  Alanine doped TGS/TGSe crystals for pyroelectric applications , 1974 .

[44]  R. E. Rosensweig,et al.  Theory of an improved thermomagnetic generator , 1967 .

[45]  H. Kiess,et al.  Theoretical Efficiency of Pyroelectric Power Converters , 1966 .

[46]  Kenkichi Okada,et al.  Antiferroelectric Phase Transition in Copper-Formate Tetrahydrate , 1965 .

[47]  W. H. Clingman,et al.  Application of Ferroelectricity to Energy Conversion Processes , 1961 .

[48]  S. Hoshino,et al.  Dielectric and Thermal Study of Tri-Glycine Sulfate and Tri-Glycine Fluoberyllate , 1957 .

[49]  P. Kobeko,et al.  Dielektrische Eigenschaften der Seignettesalzkristalle , 1930 .