Pyroelectric and dielectric energy conversion – A new view of the old problem
暂无分享,去创建一个
[1] Xavier Moya,et al. Too cool to work , 2015, Nature Physics.
[2] S. Trolier-McKinstry,et al. Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion , 2014 .
[3] Bikram Bhatia,et al. High-frequency thermal-electrical cycles for pyroelectric energy conversion , 2014 .
[4] D. Viehland,et al. Publisher's Note: Temperature-induced and electric-field-induced phase transitions in rhombohedral Pb(In 1 /2 Nb 1 /2 )O 3 -Pb(Mg 1 /3 Nb 2 /3 )O 3 -PbTiO 3 ternary single crystals [Phys. Rev. B 90, 134107 (2014)] , 2014 .
[5] D. Viehland,et al. Temperature-induced and electric-field-induced phase transitions in rhombohedral Pb ( In 1 / 2 Nb 1 / 2 ) O 3 − Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 − PbTiO 3 ternary single crystals , 2014 .
[6] N. Smith,et al. Experimentally validated finite element model of electrocaloric multilayer ceramic structures , 2014 .
[7] X. Moya,et al. Caloric materials near ferroic phase transitions. , 2014, Nature materials.
[8] Marko Ožbolt,et al. Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives , 2014 .
[9] S. Mohammadi,et al. Electrocaloric Response of Ferroelectric Material Applicable as Electrothermal Transducer , 2013 .
[10] Xavier Moya,et al. The Electrocaloric Efficiency of Ceramic and Polymer Films , 2013, Advanced materials.
[11] Christopher S. Lynch,et al. Pyroelectric waste heat energy harvesting using relaxor ferroelectric 8/65/35 PLZT and the Olsen cycle , 2012 .
[12] N. Mathur,et al. Electrocaloric Materials for Cooling Applications , 2012 .
[13] R. Chukka,et al. Investigations of Cooling Efficiencies in Solid-State Electrocaloric Device , 2012 .
[14] A. Srivastava,et al. Structural, Dielectric And Electrical Properties Of Lead Zirconate Titanate And CaCu3Ti4O12 ceramic Composite , 2011 .
[15] Laurent Pilon,et al. Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle for waste heat energy harvesting , 2010 .
[16] S. Karmanenko,et al. Thermodynamic estimation of cooling efficiency using an electrocaloric solid-state line , 2010 .
[17] H. Goldsmid,et al. Introduction to Thermoelectricity , 2010 .
[18] D. Guyomar,et al. Pyroelectric energy conversion: Optimization principles , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[19] J. Siqueiros,et al. Specific heat anomalies at 37, 105 and 455 K in SrTiO3:Pr , 2008 .
[20] B. Vodungbo,et al. 希釈磁性酸化物の構造的磁気的分光法的な研究:CoドーピングされたCeO2-δ , 2008 .
[21] Jiayue Xu,et al. Thermal properties of lead germanate single crystals grown by the vertical Bridgman method , 2005 .
[22] S. Lang. Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool , 2005 .
[23] C-H. Solterbeck,et al. Pyroelectric and piezoelectric properties of thick PZT films produced by a new sol-gel route , 2005 .
[24] X. Tan,et al. The morphotropic phase boundary and dielectric properties of the xPb(Zr1∕2Ti1∕2)O3-(1−x)Pb(Ni1∕3Nb2∕3)O3 perovskite solid solution , 2004 .
[25] V. Zaporojtchenko,et al. Dielectric and pyroelectric properties of PZFNT/PZT bimorph thin films , 2003 .
[26] Rex Watton,et al. Pyroelectric Materials and Devices , 2001 .
[27] S. Lang,et al. Pyroelectricity: Fundamentals and applications , 2001 .
[28] K. Ćwikiel,et al. The influence of a transverse electric field on the low-frequency dispersion in triglycine sulphate , 2000 .
[29] J. Dziedzic. STUDIES OF PERMITTIVITY IN THE TRIGLICINIUM SULPHATE CRYSTALS DOPED WITH CHROMIUM IONS AS A FUNCTION OF TEMPERATURE AND ELECTRIC FIELD , 2000 .
[30] J. Portelles,et al. Diffuse phase transition in (Na, Bi)-doped PbSnxTi1-xO3 ferroelectric ceramics , 1999 .
[31] A. Molak,et al. Effect of uniaxial pressure on the ferroelectric phase transition in Pb5Ge3)11 , 1999 .
[32] B. Strukov,et al. Ferroelectric Phenomena in Crystals: Physical Foundations , 1998 .
[33] Pawlik,et al. Scaling in ferroelectrics with critical points induced by an electric field. , 1994, Physical review. B, Condensed matter.
[34] K. Roleder,et al. The defect-induced ferroelectric phase in thin PbZrO3 single crystals , 1989 .
[35] Roger W. Whatmore,et al. Pyroelectric devices and materials , 1986 .
[36] J. Briscoe,et al. Pyroelectric conversion cycles , 1985 .
[37] J. Bednorz,et al. Sr 1-x Ca x TiO 3 : An XY Quantum Ferroelectric with Transition to Randomness , 1984 .
[38] E. Putley. The applications of pyroelectric devices , 1981 .
[39] R. Poprawski,et al. Influence of pyroelectric charges on the degree of polarization of TGS crystals , 1981 .
[40] A. M. Glass,et al. Principles and Applications of Ferroelectrics and Related Materials , 1977 .
[41] E. Putley. Chapter 7 The Pyroelectric Detector—An Update , 1977 .
[42] J. Burfoot,et al. Grain-size and pressure effects on the dielectric and piezoelectric properties of hot-pressed PZT-5 , 1974 .
[43] E. T. Keve,et al. Alanine doped TGS/TGSe crystals for pyroelectric applications , 1974 .
[44] R. E. Rosensweig,et al. Theory of an improved thermomagnetic generator , 1967 .
[45] H. Kiess,et al. Theoretical Efficiency of Pyroelectric Power Converters , 1966 .
[46] Kenkichi Okada,et al. Antiferroelectric Phase Transition in Copper-Formate Tetrahydrate , 1965 .
[47] W. H. Clingman,et al. Application of Ferroelectricity to Energy Conversion Processes , 1961 .
[48] S. Hoshino,et al. Dielectric and Thermal Study of Tri-Glycine Sulfate and Tri-Glycine Fluoberyllate , 1957 .
[49] P. Kobeko,et al. Dielektrische Eigenschaften der Seignettesalzkristalle , 1930 .