A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies

First, the covariance matrix adaptation (CMA) with rank-one update is introduced into the (1+1)-evolution strategy. An improved implementation of the 1/5-th success rule is proposed for step size adaptation, which replaces cumulative path length control. Second, an incremental Cholesky update for the covariance matrix is developed replacing the computational demanding and numerically involved decomposition of the covariance matrix. The Cholesky update can replace the decomposition only for the update without evolution path and reduces the computational effort from O(n3) to O(n2). The resulting (1+1)-Cholesky-CMA-ES is an elegant algorithm and the perhaps simplest evolution strategy with covariance matrix and step size adaptation. Simulations compare the introduced algorithms to previously published CMA versions.

[1]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[2]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[3]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[4]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[5]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[6]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[7]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[8]  Nikolaus Hansen,et al.  On the Adaptation of Arbitrary Normal Mutation Distributions in Evolution Strategies: The Generating Set Adaptation , 1995, ICGA.

[9]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[10]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[11]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[12]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[13]  Günter Rudolph,et al.  On Correlated Mutations in Evolution Strategies , 1992, PPSN.

[14]  Petros Koumoutsakos,et al.  Learning probability distributions in continuous evolutionary algorithms – a comparative review , 2004, Natural Computing.

[15]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[16]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[17]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[18]  Nikolaus Hansen,et al.  An Analysis of Mutative -Self-Adaptation on Linear Fitness Functions , 2006, Evolutionary Computation.