Theoretical guarantees for poisson disk sampling using pair correlation function

In this paper, we study the problem of generating uniform random point samples on a domain of d dimensional space based on a minimum distance criterion between point samples (Poisson-disk sampling or PDS). First, we formally define PDS via the pair correlation function (PCF) to quantitatively evaluate properties of the sampling process. Surprisingly, none of the existing PDS techniques satisfy both uniformity and minimum distance criterion, simultaneously. These approaches typically create an approximate PDS with high regularity, and inherently present high risk for sample aliasing. Our new formulation based on PCF introduces a new approach to evaluate PDS properties which leads to theoretical bounds on the size of a PDS in arbitrary dimensions as well as a faster algorithm to create better quality samplings than the current PDS approaches.

[1]  Jianwei Guo,et al.  Efficient triangulation of Poisson-disk sampled point sets , 2014, The Visual Computer.

[2]  Li-Yi Wei,et al.  Parallel Poisson disk sampling , 2008, ACM Trans. Graph..

[3]  Michael Balzer,et al.  Capacity-constrained point distributions: a variant of Lloyd's method , 2009, ACM Trans. Graph..

[4]  Amitabh Varshney,et al.  PixelPie: maximal Poisson-disk sampling with rasterization , 2013, HPG '13.

[5]  Qian Sun,et al.  An Intrinsic Algorithm for Parallel Poisson Disk Sampling on Arbitrary Surfaces , 2013, IEEE Transactions on Visualization and Computer Graphics.

[6]  Steve C. Maddock,et al.  Accurate multidimensional Poisson-disk sampling , 2009, TOGS.

[7]  Zhenhua Li,et al.  A parallel algorithm for improving the maximal property of Poisson disk sampling in R2 and R3 , 2013, I3D '13.

[8]  Mohamed S. Ebeida,et al.  A Simple Algorithm for Maximal Poisson‐Disk Sampling in High Dimensions , 2012, Comput. Graph. Forum.

[9]  Peter Wonka,et al.  Adaptive maximal Poisson-disk sampling on surfaces , 2012, SIGGRAPH Asia Technical Briefs.

[10]  Robert Bridson,et al.  Fast Poisson disk sampling in arbitrary dimensions , 2007, SIGGRAPH '07.

[11]  Jing Wang,et al.  A pipeline for surface reconstruction of 3-dimentional point cloud , 2014, 2014 International Conference on Audio, Language and Image Processing.

[12]  Li-Yi Wei,et al.  Point sampling with general noise spectrum , 2012, ACM Trans. Graph..

[13]  Gurprit Singh,et al.  Fast tile-based adaptive sampling with user-specified Fourier spectra , 2014, ACM Trans. Graph..

[14]  Markus Gross,et al.  Analysis and synthesis of point distributions based on pair correlation , 2012, ACM Trans. Graph..

[15]  Li-yi Wei Multi-class blue noise sampling , 2010 .

[16]  Mohamed S. Ebeida,et al.  Efficient maximal poisson-disk sampling , 2011, ACM Trans. Graph..

[17]  Michael D. McKay,et al.  Latin hypercube sampling as a tool in uncertainty analysis of computer models , 1992, WSC '92.

[18]  O. Deussen,et al.  Capacity-constrained point distributions: a variant of Lloyd's method , 2009, SIGGRAPH 2009.

[19]  Oliver Deussen,et al.  Blue noise sampling with controlled aliasing , 2013, TOGS.

[20]  Mohamed S. Ebeida,et al.  k-d Darts , 2013, ACM Trans. Graph..

[21]  Zhenhua Li,et al.  A parallel algorithm for improving the maximal property of Poisson disk sampling , 2014, Comput. Aided Des..

[22]  Xin Li,et al.  Poisson disk sampling in geodesic metric for DEM simplification , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[23]  Mathieu Desbrun,et al.  Blue noise through optimal transport , 2012, ACM Trans. Graph..

[24]  Dong-Ming Yan,et al.  Gap processing for adaptive maximal poisson-disk sampling , 2012, TOGS.

[25]  Greg Humphreys,et al.  A spatial data structure for fast Poisson-disk sample generation , 2006, ACM Trans. Graph..

[26]  Ares Lagae,et al.  A Comparison of Methods for Generating Poisson Disk Distributions , 2008, Comput. Graph. Forum.

[27]  Heng Wang,et al.  Approximate Poisson disk sampling on mesh , 2013, Science China Information Sciences.