On the ordering of the first two excited electronic states in all-trans linear polyenes.

Reported experimental evidence of the relative position of the first two excited electronic states in linear polyenes was carefully examined and compared with that derived from time dependent density functional theory (TDDFT) theoretical calculations performed at the B3LYP level on optimized geometries. The energy values for the first two triplet states 3Bu and 3Ag, obtained from TDDFT calculations, were found to be highly strongly correlated with the experimental values. Also, the theoretical calculations for the electronic transition 1 1Ag --> 1 1Bu were also extremely well correlated with their experimental counterparts; even more important, the three reported experimental data for 1 1Ag --> 2 1Ag transitions in these systems conformed to the correlation for the TDDFT 1 1Ag --> 1 1Bu transition. The first excited electronic state in the linear polyenes studied (from ethene to the compound consisting of 40 ethene units, P40) was found to be 1Bu. The energy gap between the excited states 2 1Ag and 1 1Bu decreased with increasing length of the polyene chain, but not to the extent required to cause inversion, at least up to P40. In the all-trans linear polyenes studied, the widely analyzed energy gap from the ground electronic state to the first excited singlet state for infinitely long chains may be meaningless as, even in P40, it is uncertain whether the ground electronic state continues to be a singlet.

[1]  Christopher S. Foote,et al.  Chemistry of singlet oxy-gen: VIII quenching by b-carotene , 1968 .

[2]  S. Rice,et al.  Spectroscopic properties of polyenes. I. The lowest energy allowed singlet‐singlet transition for cis‐ and trans‐ 1,3,5‐hexatriene , 1973 .

[3]  B. Hudson,et al.  A low-lying weak transition in the polyene α,ω-diphenyloctatetraene , 1972 .

[4]  J. André,et al.  Etude théorique d'une chaine polyénique infinie par la méthode LCAO-SCF-CO , 1967 .

[5]  Hans Kuhn,et al.  A Quantum‐Mechanical Theory of Light Absorption of Organic Dyes and Similar Compounds , 1949 .

[6]  B. Hudson,et al.  Polyene spectroscopy: The lowest energy excited singlet state of diphenyloctatetraene and other linear polyenes , 1973 .

[7]  C. Coulson,et al.  The Electronic Structure of Some Polyenes and Aromatic Molecules. VII. Bonds of Fractional Order by the Molecular Orbital Method , 1939 .

[8]  E. H. Wiebenga,et al.  Structure of α,ω‐diphenyl‐polyenes. IV. Crystal and molecular structure of 1,8‐diphenyl‐1,3,5,7‐octatetraene , 1955 .

[9]  R. S. Mulliken Intensities of Electronic Transitions in Molecular Spectra VII. Conjugated Polyenes and Carotenoids , 1939 .

[10]  C. H. Stam The crystal structure of a monoclinic modification and the refinement of a triclinic modification of vitamin A acid (retinoic acid), C20H28O2 , 1972 .

[11]  C. Foote,et al.  Chemistry of singlet oxygen. XI. Cis-trans isomerization of carotenoids by singlet oxygen and a probable quenching mechanism. , 1970, Journal of the American Chemical Society.

[12]  T. Fujii,et al.  Two-photon absorption study of 1,3,5-hexatriene by cars and CSRS , 1985 .

[13]  R. Mathies,et al.  Excited-state polarizabilities and dipole moments of diphenylpolyenes and retinal , 1983 .

[14]  A. Kuppermann,et al.  Triplet states in 1,3-butadiene , 1973 .

[15]  O. E. Polansky,et al.  Influence of the long-range coulomb interaction upon the energy spectrum of infinite polyenes , 1980 .

[16]  S. Rice,et al.  Spectroscopic properties of polyenes. II. The vacuum ultraviolet spectra of cis‐ and trans‐1,3,5‐hexatriene , 1974 .

[17]  M. F. Granville,et al.  Franck–Condon analysis of the 1 1Ag→1 1Bu absorption in linear polyenes with two through six double bonds , 1981 .

[18]  B. Kohler,et al.  Linear Polyene Electronic Structure and Spectroscopy , 1974 .

[19]  A. Kuppermann,et al.  Low energy, variable angle electron-impact excitation of 1,3,5-hexatriene☆ , 1977 .

[20]  Melvin B. Robin,et al.  Higher excited states of polyatomic molecules , 1974 .

[21]  H. Lüthi,et al.  Assessment of time-dependent density-functional theory for the calculation of critical features in the absorption spectra of a series of aromatic donor–acceptor systems , 2002 .

[22]  J. Karle,et al.  The crystal and molecular structure of 11-cis-retinal , 1972 .

[23]  J. Andrews,et al.  Environmental effects on radiative rate constants with applications to linear polyenes , 1978 .

[24]  A. Birch Biogenesis of Natural Products , 1957, Nature.

[25]  N. A. Kuebler,et al.  An MPI search for the π→3p Rydberg states of ethylene , 1982 .

[26]  M. Allan,et al.  (all‐E)‐1,3,5,7‐Octatetraene: Electron‐Energy‐Loss and Electron‐Transmission Spectra , 1984 .

[27]  H. Frank,et al.  How carotenoids function in photosynthetic bacteria. , 1987, Biochimica et biophysica acta.

[28]  M. Head‐Gordon,et al.  Excitation Energies from Time-Dependent Density Functional Theory for Linear Polyene Oligomers: Butadiene to Decapentaene , 2001 .

[29]  M. Heyde,et al.  Raman spectra of Schiff bases of retinal (models of visual photoreceptors). , 1971, Journal of the American Chemical Society.

[30]  John Edward Lennard-Jones,et al.  The Electronic Structure of Some Polyenes and Aromatic Molecules. I. The Nature of the Links by the Method of Molecular Orbitals , 1937 .

[31]  J. Murrell The theory of the electronic spectra of organic molecules , 1963 .

[32]  M. Head‐Gordon,et al.  Time-dependent density functional study on the electronic excitation energies of polycyclic aromatic hydrocarbon radical cations of naphthalene, anthracene, pyrene, and perylene , 1999 .

[33]  J. Platt Wavelength Formulas and Configuration Interaction in Brooker Dyes and Chain Molecules , 1956 .

[34]  E. Haselbach,et al.  Excited states of polyene radical cations: limitations of Koopmans' theorem , 1984 .

[35]  J. Karle,et al.  Crystal Structure of the Visual Chromophores, 11-cis and all-trans Retinal , 1971, Nature.

[36]  H. Labhart FE Theory Including an Elastic σ Skeleton. I. Spectra and Bond Lengths in Long Polyenes , 1957 .

[37]  Ronald L. Christensen,et al.  Electronic energy levels in a homologous series of unsubstituted linear polyenes , 1980 .

[38]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .

[39]  R. S. Mulliken The excited states of ethylene , 1977 .

[40]  G. Lewis,et al.  The Color of Organic Substances. , 1939 .

[41]  M. Kertész,et al.  Ab initio Hartree–Fock crystal orbital studies. Energy bands in polyene reconsidered , 1977 .

[42]  T. Ashida,et al.  The crystal structure of all-trans retinal1 , 1972 .

[43]  S. Rice,et al.  Spectroscopic properties of polyenes. III. 1,3,5,7‐Octatetraene , 1978 .

[44]  G. Kventsel,et al.  Reviews of Topical Problems: Theory of One-Dimensional Mott Semiconductors and the Electronic Structure of Long Molecules Having Conjugated Bonds , 1973 .

[45]  D. Siefermann-Harms Carotenoids in photosynthesis. I: Location in photosynthetic membranes and light-harvesting function , 1985 .

[46]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[47]  R. D. Topsom,et al.  Raman intensity and conjugation. 5. A quantitative relationship between Raman intensity and the length of conjugation and an analysis of the Raman intensities of some substituted benzenes and biphenyls , 1981 .

[48]  P. Shorygin New Possibilities and Chemical Applications of Raman Spectroscopy , 1978 .

[49]  C. Macgillavry,et al.  The crystal and molecular structure of canthaxanthin. , 1968, Acta crystallographica. Section B: Structural crystallography and crystal chemistry.

[50]  E. Heilbronner,et al.  The Ionization Potentials of Butadiene, Hexatriene, and their Methyl Derivatives: Evidence for through space interaction between double bond π‐orbitals and non‐bonded pseudo‐π orbitals of methyl groups? , 1973 .

[51]  A. Karpfen,et al.  Ab initio studies on all-trans-polyene☆ , 1979 .

[52]  N. Davidson,et al.  The Photochemical Exchange Reaction between Tin(II) and Tin(IV) in Hydrochloric Acid Solution1 , 1951 .

[53]  M. Robin Handbook of He(I) photoelectron spectra of fundamental organic molecules : K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki and S. Iwata, 1981, Japan Scientific Societies Press, Tokyo, ISBN 4-7622-0263-X and Halsted Press, New York, 268 pp., US $44.95, ISBN 0-470-27200-7. , 1982 .

[54]  J. P. Doering,et al.  100 eV electron impact study of 1,3‐butadiene , 1981 .

[55]  W. Huber,et al.  Nature of the Free Electron Model. The Case of the Polyenes and Polyacetylenes , 1960 .

[56]  H. Schenk The Crystal and Molecular Structure of the Five-Membered-Ring Analogue of Vitamin-A Acid , 1971 .

[57]  Y. Ooshika A Semi-empirical Theory of the Conjugated Systems : II. Bond Alternation in Conjugated Chains , 1957 .

[58]  N. Rösch,et al.  An efficient method for calculating molecular excitation energies by time-dependent density-functional theory , 2000 .

[59]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[60]  J. Catalán On the inversion of the 1 Bu and 2 Ag electronic states in α,ω-diphenylpolyenes , 2003 .

[61]  L. Salem The molecular orbital theory of conjugated systems , 1966 .