Complete Genome Sequence of Staphylococcus aureus Siphophage Sebago

Here, we introduce the genome of Sebago, a 43,878-bp siphophage that infects Staphylococcus aureus. Sebago carries 70 proteins and is most closely related to StauST398, a Phietavirus. ABSTRACT Here, we introduce the genome of Sebago, a 43,878-bp siphophage that infects Staphylococcus aureus. Sebago carries 70 proteins and is most closely related to StauST398, a Phietavirus.

[1]  Eric P. Skaar,et al.  Nonconventional Therapeutics against Staphylococcus aureus , 2018, Microbiology spectrum.

[2]  Marius van den Beek,et al.  The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update , 2018, Nucleic Acids Res..

[3]  The Uniprot Consortium UniProt: the universal protein knowledgebase , 2018, Nucleic acids research.

[4]  D. Bikard,et al.  PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data , 2017, Scientific Reports.

[5]  D. Missiakas,et al.  Pathogenesis of Staphylococcus aureus Bloodstream Infections. , 2016, Annual review of pathology.

[6]  S. Sreevatsan,et al.  Prevalence and Characterization of Staphylococcus aureus in Growing Pigs in the USA , 2015, PloS one.

[7]  Vance G. Fowler,et al.  Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management , 2015, Clinical Microbiology Reviews.

[8]  R. Hendrix,et al.  Chaperone-protein interactions that mediate assembly of the bacteriophage lambda tail to the correct length. , 2014, Journal of molecular biology.

[9]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[10]  Whole-Genome Sequences of Staphylococcus aureus ST398 Strains of Animal Origin , 2013, Genome Announcements.

[11]  Monica C Munoz-Torres,et al.  Web Apollo: a web-based genomic annotation editing platform , 2013, Genome Biology.

[12]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[13]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[14]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[15]  E. Summer Preparation of a phage DNA fragment library for whole genome shotgun sequencing. , 2009, Methods in molecular biology.

[16]  T. Itoh,et al.  MetaGeneAnnotator: Detecting Species-Specific Patterns of Ribosomal Binding Site for Precise Gene Prediction in Anonymous Prokaryotic and Phage Genomes , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[17]  O. Schneewind,et al.  Genome Sequence of Staphylococcus aureus Strain Newman and Comparative Analysis of Staphylococcal Genomes: Polymorphism and Evolution of Two Major Pathogenicity Islands , 2007, Journal of bacteriology.

[18]  S. Salzberg,et al.  Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake , 2007, Genome Biology.

[19]  Dean Laslett,et al.  ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. , 2004, Nucleic acids research.

[20]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[21]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[22]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[23]  E. Stadtman,et al.  Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. , 1968, Biochemistry.