Implementation of allocation rules under perfect information

We study subgame perfect implementation through perfect information mechanisms in economic environments. We assume that worst bundles exist for each agent and can be assigned to them independently of the bundle assigned to at least one other agent. We restrict our attention to allocation rules that are anonymous, efficient on their own range, single-valued in welfare, and that induce agents' participation. We define a class of mechanisms, which satisfy properties of minimal path length and finiteness of message dimensions. We characterize the class of allocation rules which can be implemented through those mechanisms.

[1]  H. Moulin Dominance Solvable Voting Schemes , 1979 .

[2]  Andreu Mas-Colell,et al.  Cost share equilibria: A Lindahlian approach☆ , 1989 .

[3]  Gabrielle Demange,et al.  Implementing Efficient Egalitarian Equivalent Allocations , 1984 .

[4]  M. Jackson Implementation in Undominated Strategies: A Look at Bounded Mechanisms , 1992 .

[5]  Mamoru Kaneko,et al.  The ratio equilibrium and a voting game in a public goods economy , 1977 .

[6]  H. Moulin Implementing the Kalai-Smorodinsky bargaining solution , 1984 .

[7]  J. Roemer,et al.  The Proportional Solution for Economies with Both Private and Public Ownership , 1993 .

[8]  Hervé Moulin,et al.  Egalitarian-equivalent cost sharing of a public good , 1987 .

[9]  David Schmeidler,et al.  CONSTRUCTION OF OUTCOME FUNCTIONS GUARANTEEING , 1978 .

[10]  H. Moulin,et al.  Serial Cost Sharing , 1992 .

[11]  L'équité en environnement économique. , 1999 .

[12]  William Thomson,et al.  Consistent Solutions to the Problem of Fair Division When Preferences Are Single-Peaked , 1994 .

[13]  Hervé Moulin,et al.  The Conditional Auction Mechanism for Sharing a Surplus , 1984 .

[14]  Hervé Moulin,et al.  Implementing just and efficient decision-making , 1981 .

[15]  James K. Sebenius,et al.  Negotiating the Law of the Sea , 1984 .

[16]  W. Thomson,et al.  The fair allocation of an indivisible good when monetary compensations are possible , 1993 .

[17]  William Thomson,et al.  Axiomatic Analysis of Resource Allocation Problems , 1997 .

[18]  Double implementation in Nash and strong Nash equilibria , 1997 .

[19]  V. Crawford A Self-administered Solution of the Bargaining Problem , 1980 .

[20]  John. Moore,et al.  Subgame Perfect Implementation , 1988 .

[21]  Yves Sprumont Strategyproof Collective Choice in Economic and Political Environments , 1995 .

[22]  Thomas R. Palfrey,et al.  Nash Implementation Using Undominated Strategies , 1991 .

[23]  H. Moulin Fair division under joint ownership: Recent results and open problems , 1990 .

[24]  Vincent P. Crawford,et al.  A Game of Fair Division , 1977 .

[25]  Hervé Moulin,et al.  The Pure Compensation Problem: Egalitarianism Versus Laissez-Fairism , 1987 .

[26]  Dilip Abreu,et al.  Subgame perfect implementation: A necessary and almost sufficient condition , 1990 .

[27]  Vincent P. Crawford,et al.  A Procedure for Generating Pareto-Efficient Egalitarian-Equivalent Allocations , 1979 .

[28]  Jacob Glazer,et al.  Efficient allocation of a “prize”-King Solomon's dilemma , 1989 .

[29]  E. Maskin Nash Equilibrium and Welfare Optimality , 1999 .

[30]  J. Laffont,et al.  Implementation, Contracts, and Renegotiation in Environments With Complete Information , 1992 .

[31]  Serge-Christophe Kolm,et al.  Justice et équité , 1972 .

[32]  Yves Sprumont,et al.  Pazner–Schmeidler rules in large societies , 1999 .

[33]  Yves Sprumont The Division Problem with Single-Peaked Preferences: A Characterization of the Uniform Allocation Rule , 1991 .

[34]  Sanjay Srivastava,et al.  Implementation via backward induction , 1992 .