Generic Round-Function-Recovery Attacks for Feistel Networks over Small Domains

Feistel Networks (FN) are now being used massively to encrypt credit card numbers through format-preserving encryption. In our work, we focus on FN with two branches, entirely unknown round functions, modular additions (or other group operations), and when the domain size of a branch (called Open image in new window ) is small. We investigate round-function-recovery attacks.

[1]  Whitfield Diffie,et al.  Special Feature Exhaustive Cryptanalysis of the NBS Data Encryption Standard , 1977, Computer.

[2]  Michael Luby,et al.  How to Construct Pseudo-Random Permutations from Pseudo-Random Functions (Abstract) , 1986, CRYPTO.

[3]  Jacques Patarin,et al.  New Results on Pseudorandom Permutation Generators Based on the DES Scheme , 1991, CRYPTO.

[4]  Jacques Patarin,et al.  Generic Attacks on Feistel Schemes , 2001, ASIACRYPT.

[5]  Serge Vaudenay,et al.  The Security of DSA and ECDSA , 2003, Public Key Cryptography.

[6]  Valérie Nachef,et al.  Generic Attacks on Unbalanced Feistel Schemes with Contracting Functions , 2006, ASIACRYPT.

[7]  Jongsung Kim,et al.  Improving the Efficiency of Impossible Differential Cryptanalysis of Reduced Camellia and MISTY 1 , 2007 .

[8]  Mihir Bellare,et al.  Format-Preserving Encryption , 2009, IACR Cryptol. ePrint Arch..

[9]  M. Bellare,et al.  The FFX Mode of Operation for Format-Preserving Encryption Draft 1 . 1 , 2010 .

[10]  Jacques Patarin,et al.  Security of balanced and unbalanced Feistel Schemes with Linear Non Equalities , 2010, IACR Cryptol. ePrint Arch..

[11]  Phillip Rogaway,et al.  On Generalized Feistel Networks , 2010, CRYPTO.

[12]  Adi Shamir,et al.  Efficient Dissection of Composite Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial Search Problems , 2012, CRYPTO.

[13]  Kyoji Shibutani,et al.  All Subkeys Recovery Attack on Block Ciphers: Extending Meet-in-the-Middle Approach , 2012, Selected Areas in Cryptography.

[14]  Valérie Nachef,et al.  Differential Attacks on Generalized Feistel Schemes , 2013, CANS.

[15]  Morris Dworkin 800-38 G Recommendation for Block Cipher Modes of Operation : Methods for Format-Preserving Encryption , 2013 .

[16]  Kyoji Shibutani,et al.  Generic Key Recovery Attack on Feistel Scheme , 2013, IACR Cryptol. ePrint Arch..

[17]  Alex Biryukov,et al.  On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure , 2015, CRYPTO.

[18]  Adi Shamir,et al.  New Attacks on Feistel Structures with Improved Memory Complexities , 2015, CRYPTO.

[19]  Alex Biryukov,et al.  Cryptanalysis of Feistel Networks with Secret Round Functions , 2015, SAC.

[20]  Mihir Bellare,et al.  Message-Recovery Attacks on Feistel-Based Format Preserving Encryption , 2016, CCS.

[21]  Serge Vaudenay,et al.  Breaking the FF3 Format-Preserving Encryption Standard over Small Domains , 2017, CRYPTO.

[22]  S. Vaudenay,et al.  Breaking the FF3 Format Preserving Encryption , 2017, CRYPTO 2017.