p62-Dependent Phase Separation of Patient-Derived KEAP1 Mutations and NRF2

Cancer-derived loss-of-function mutations in the KEAP1 tumor suppressor gene stabilize the NRF2 transcription factor, resulting in a prosurvival gene expression program that alters cellular metabolism and neutralizes oxidative stress. In a recent genotype-phenotype study, we classified 40% of KEAP1 mutations as ANCHOR mutants. ABSTRACT Cancer-derived loss-of-function mutations in the KEAP1 tumor suppressor gene stabilize the NRF2 transcription factor, resulting in a prosurvival gene expression program that alters cellular metabolism and neutralizes oxidative stress. In a recent genotype-phenotype study, we classified 40% of KEAP1 mutations as ANCHOR mutants. By immunoprecipitation, these mutants bind more NRF2 than wild-type KEAP1 and ubiquitylate NRF2, but they are incapable of promoting NRF2 degradation. BioID-based protein interaction studies confirmed increased abundance of NRF2 within the KEAP1 ANCHOR mutant complexes, with no other statistically significant changes to the complexes. Discrete molecular dynamic simulation modeling and limited proteolysis suggest that the ANCHOR mutations stabilize residues in KEAP1 that contact NRF2. The modeling supports an intramolecular salt bridge between the R470C ANCHOR mutation and E493; mutation of the E493 residue confirmed the model, resulting in the ANCHOR phenotype. In live cells, the KEAP1 R320Q and R470C ANCHOR mutants colocalize with NRF2, p62/SQSTM1, and polyubiquitin in structured spherical droplets that rapidly fuse and dissolve. Transmission electron microscopy coupled with confocal fluorescent imaging revealed membraneless phase-separated biomolecular condensates. We present a model wherein ANCHOR mutations form p62-dependent biomolecular condensates that may represent a transitional state between impaired proteasomal degradation and autophagy.

[1]  T. Wollert Autophagy , 2019, Current Biology.

[2]  C. Sachse,et al.  Phasing out the bad—How SQSTM1/p62 sequesters ubiquitinated proteins for degradation by autophagy , 2018, Autophagy.

[3]  J. Taylor,et al.  Ubiquitin Modulates Liquid-Liquid Phase Separation of UBQLN2 via Disruption of Multivalent Interactions. , 2018, Molecules and Cells.

[4]  Pilong Li,et al.  Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation , 2018, Cell Research.

[5]  C. Sachse,et al.  p62 filaments capture and present ubiquitinated cargos for autophagy , 2018, The EMBO journal.

[6]  M. Hochstrasser,et al.  Proteasome Structure and Assembly. , 2017, Journal of molecular biology.

[7]  Z. Qian,et al.  VPS34 stimulation of p62 phosphorylation for cancer progression , 2017, Oncogene.

[8]  N. Mizushima,et al.  Monitoring and Measuring Autophagy , 2017, International journal of molecular sciences.

[9]  J. Chi,et al.  Glycosylation of KEAP1 links nutrient sensing to redox stress signaling , 2017, The EMBO journal.

[10]  A. Goldberg,et al.  The Logic of the 26S Proteasome , 2017, Cell.

[11]  Masayuki Yamamoto,et al.  The KEAP1–NRF2 System in Cancer , 2017, Front. Oncol..

[12]  Anthony A. Hyman,et al.  Biomolecular condensates: organizers of cellular biochemistry , 2017, Nature Reviews Molecular Cell Biology.

[13]  L. Hui,et al.  Ubiquitylation of p62/sequestosome1 activates its autophagy receptor function and controls selective autophagy upon ubiquitin stress , 2017, Cell Research.

[14]  A. Dinkova-Kostova,et al.  Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants☆ , 2017, Archives of biochemistry and biophysics.

[15]  P. Liu,et al.  p97 Negatively Regulates NRF2 by Extracting Ubiquitylated NRF2 from the KEAP1-CUL3 E3 Complex , 2017, Molecular and Cellular Biology.

[16]  T. Chou,et al.  Keap1/Cullin3 Modulates p62/SQSTM1 Activity via UBA Domain Ubiquitination. , 2017, Cell reports.

[17]  L. Ye,et al.  p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation , 2016, Cellular & Molecular Biology Letters.

[18]  M. Kwak,et al.  Shadows of NRF2 in cancer: Resistance to chemotherapy , 2016 .

[19]  Masayuki Yamamoto,et al.  Small Maf deficiency recapitulates the liver phenotypes of Nrf1‐ and Nrf2‐deficient mice , 2016, Genes to cells : devoted to molecular & cellular mechanisms.

[20]  D. Klionsky,et al.  Autophagy: machinery and regulation , 2016, Microbial cell.

[21]  Cathy H. Wu,et al.  UniProt: the universal protein knowledgebase , 2016, Nucleic Acids Research.

[22]  Takafumi Suzuki,et al.  Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within Cells , 2016, Molecular and Cellular Biology.

[23]  J. Cook,et al.  Identification and Characterization of MCM3 as a Kelch-like ECH-associated Protein 1 (KEAP1) Substrate* , 2016, The Journal of Biological Chemistry.

[24]  Angela N. Brooks,et al.  High-throughput Phenotyping of Lung Cancer Somatic Mutations. , 2016, Cancer cell.

[25]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[26]  Stephen W. Michnick,et al.  Mechanisms and Consequences of Macromolecular Phase Separation , 2016, Cell.

[27]  Chandra Sekhar Pedamallu,et al.  Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas , 2016, Nature Genetics.

[28]  Kenneth H. Roux,et al.  An improved smaller biotin ligase for BioID proximity labeling , 2016, Molecular biology of the cell.

[29]  Nikolay V Dokholyan,et al.  Applications of Discrete Molecular Dynamics in biology and medicine. , 2016, Current opinion in structural biology.

[30]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2015, Nucleic Acids Res..

[31]  Matthias Mann,et al.  Visualization of LC‐MS/MS proteomics data in MaxQuant , 2015, Proteomics.

[32]  J. L. La Clair,et al.  Inhibitors of the AAA+ Chaperone p97 , 2015, Molecules.

[33]  Mingming Jia,et al.  COSMIC: exploring the world's knowledge of somatic mutations in human cancer , 2014, Nucleic Acids Res..

[34]  D. Llères,et al.  Monitoring Keap1–Nrf2 interactions in single live cells , 2014, Biotechnology advances.

[35]  A. Hyman,et al.  Liquid-liquid phase separation in biology. , 2014, Annual review of cell and developmental biology.

[36]  Keiji Tanaka,et al.  Proteasome Dysfunction Activates Autophagy and the Keap1-Nrf2 Pathway* , 2014, The Journal of Biological Chemistry.

[37]  D. Rubinsztein,et al.  Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly , 2014, Cell Death and Differentiation.

[38]  R. Pacchiana,et al.  Combining immunofluorescence with in situ proximity ligation assay: a novel imaging approach to monitor protein–protein interactions in relation to subcellular localization , 2014, Histochemistry and Cell Biology.

[39]  P. Lőw,et al.  The Role of the Selective Adaptor p62 and Ubiquitin-Like Proteins in Autophagy , 2014, BioMed research international.

[40]  J. Yon,et al.  Structure of the BTB Domain of Keap1 and Its Interaction with the Triterpenoid Antagonist CDDO , 2014, PloS one.

[41]  V. Doye,et al.  Probing nuclear pore complex architecture with proximity-dependent biotinylation , 2014, Proceedings of the National Academy of Sciences.

[42]  Bridgid E Hast,et al.  Molecular and Cellular Pathobiology Cancer-derived Mutations in Keap1 Impair Nrf2 Degradation but Not Ubiquitination , 2022 .

[43]  A. Ciechanover,et al.  The complexity of recognition of ubiquitinated substrates by the 26S proteasome. , 2014, Biochimica et biophysica acta.

[44]  P. Spano,et al.  The "in situ" proximity ligation assay to probe protein-protein interactions in intact tissues. , 2014, Methods in molecular biology.

[45]  Q. You,et al.  Insight into the Intermolecular Recognition Mechanism between Keap1 and IKKβ Combining Homology Modelling, Protein-Protein Docking, Molecular Dynamics Simulations and Virtual Alanine Mutation , 2013, PloS one.

[46]  T. Mizushima,et al.  Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. , 2013, Molecular cell.

[47]  D. Llères,et al.  Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex , 2013, Proceedings of the National Academy of Sciences.

[48]  Masayuki Yamamoto,et al.  Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis. , 2013, Cancer research.

[49]  Patrick Porubsky,et al.  Selective, reversible inhibitors of the AAA ATPase p97 , 2013 .

[50]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[51]  A. Dinkova-Kostova,et al.  Diffusion dynamics of the Keap1-Cullin3 interaction in single live cells. , 2013, Biochemical and biophysical research communications.

[52]  L. Cai,et al.  Preventive and Therapeutic Effects of MG132 by Activating Nrf2-ARE Signaling Pathway on Oxidative Stress-Induced Cardiovascular and Renal Injury , 2013, Oxidative medicine and cellular longevity.

[53]  Junnian Zheng,et al.  Keap1: one stone kills three birds Nrf2, IKKβ and Bcl-2/Bcl-xL. , 2012, Cancer letters.

[54]  Steven J. M. Jones,et al.  Comprehensive genomic characterization of squamous cell lung cancers , 2012, Nature.

[55]  Y. Sun,et al.  Targeting Cullin-RING ligases by MLN4924 induces autophagy via modulating the HIF1-REDD1-TSC1-mTORC1-DEPTOR axis , 2012, Cell Death and Disease.

[56]  Angela N. Brooks,et al.  Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing , 2012, Cell.

[57]  L. Jeong,et al.  Inactivation of the Cullin (CUL)-RING E3 ligase by the NEDD8-activating enzyme inhibitor MLN4924 triggers protective autophagy in cancer cells , 2012, Autophagy.

[58]  Masaaki Komatsu,et al.  Keap1 degradation by autophagy for the maintenance of redox homeostasis , 2012, Proceedings of the National Academy of Sciences.

[59]  Feng Ding,et al.  Discrete molecular dynamics: an efficient and versatile simulation method for fine protein characterization. , 2012, The journal of physical chemistry. B.

[60]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[61]  Brian Burke,et al.  A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells , 2012, The Journal of cell biology.

[62]  B. Sobhian,et al.  PALB2 Interacts with KEAP1 To Promote NRF2 Nuclear Accumulation and Function , 2012, Molecular and Cellular Biology.

[63]  Xiaodong Wang,et al.  The Mitochondrial Phosphatase PGAM5 Functions at the Convergence Point of Multiple Necrotic Death Pathways , 2012, Cell.

[64]  F. Ding,et al.  Discrete molecular dynamics , 2012 .

[65]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[66]  S. Niture,et al.  Inhibitor of Nrf2 (INrf2 or Keap1) Protein Degrades Bcl-xL via Phosphoglycerate Mutase 5 and Controls Cellular Apoptosis* , 2011, The Journal of Biological Chemistry.

[67]  S. Finkbeiner,et al.  A comprehensive glossary of autophagy-related molecules and processes (2nd edition) , 2011, Autophagy.

[68]  R. Deshaies,et al.  Development of p97 AAA ATPase inhibitors , 2011, Autophagy.

[69]  C. Sander,et al.  Predicting the functional impact of protein mutations: application to cancer genomics , 2011, Nucleic acids research.

[70]  M. Kruszewski,et al.  Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. , 2011, Free radical biology & medicine.

[71]  Steven J Brown,et al.  Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways , 2011, Proceedings of the National Academy of Sciences.

[72]  A. Dinkova-Kostova,et al.  The cytoprotective role of the Keap1–Nrf2 pathway , 2011, Archives of Toxicology.

[73]  S. Niture,et al.  INrf2 (Keap1) targets Bcl-2 degradation and controls cellular apoptosis , 2011, Cell Death and Differentiation.

[74]  Masayuki Yamamoto,et al.  Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution , 2011, Genes to cells : devoted to molecular & cellular mechanisms.

[75]  K. Itoh,et al.  Discovery of the negative regulator of Nrf2, Keap1: a historical overview. , 2010, Antioxidants & redox signaling.

[76]  Donna D. Zhang The Nrf2-Keap1-ARE signaling pathway: The regulation and dual function of Nrf2 in cancer. , 2010, Antioxidants & redox signaling.

[77]  S. Niture,et al.  Hsp90 Interaction with INrf2(Keap1) Mediates Stress-induced Nrf2 Activation* , 2010, The Journal of Biological Chemistry.

[78]  Jeung-Hoon Lee,et al.  Influence of p53 expression on sensitivity of cancer cells to bleomycin , 2010, Journal of biochemical and molecular toxicology.

[79]  N. Chen,et al.  High levels of Nrf2 determine chemoresistance in type II endometrial cancer. , 2010, Cancer research.

[80]  Stephen G Swisher,et al.  Nrf2 and Keap1 Abnormalities in Non–Small Cell Lung Carcinoma and Association with Clinicopathologic Features , 2010, Clinical Cancer Research.

[81]  E. White,et al.  A Noncanonical Mechanism of Nrf2 Activation by Autophagy Deficiency: Direct Interaction between Keap1 and p62 , 2010, Molecular and Cellular Biology.

[82]  G. Sykiotis,et al.  Stress-Activated Cap'n'collar Transcription Factors in Aging and Human Disease , 2010, Science Signaling.

[83]  F. Khodagholi,et al.  Stabilization of transcription factor Nrf2 by tBHQ prevents oxidative stress-induced amyloid beta formation in NT2N neurons. , 2010, Biochimie.

[84]  Mihee M. Kim,et al.  The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 , 2010, Nature Cell Biology.

[85]  T. Ogura,et al.  Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains , 2010, Proceedings of the National Academy of Sciences.

[86]  N. Kikuchi,et al.  Nrf2 Enhances Cell Proliferation and Resistance to Anticancer Drugs in Human Lung Cancer , 2009, Clinical Cancer Research.

[87]  M. McMahon,et al.  NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. , 2009, Trends in biochemical sciences.

[88]  Carolina Wählby,et al.  BlobFinder, a tool for fluorescence microscopy image cytometry , 2009, Comput. Methods Programs Biomed..

[89]  M. Komatsu,et al.  A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. , 2009, Molecular cell.

[90]  Keiji Tanaka,et al.  Molecular mechanisms of proteasome assembly , 2009, Nature Reviews Molecular Cell Biology.

[91]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[92]  P. Wong,et al.  Dual roles of Nrf2 in cancer. , 2008, Pharmacological research.

[93]  S. Hirohashi,et al.  Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. , 2008, Gastroenterology.

[94]  S. Lippman,et al.  Lung cancer. , 2008, The New England journal of medicine.

[95]  Tsutomu Ohta,et al.  Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy , 2008, Proceedings of the National Academy of Sciences.

[96]  Weimin Chen,et al.  Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. , 2008, Carcinogenesis.

[97]  S A Forbes,et al.  The Catalogue of Somatic Mutations in Cancer (COSMIC) , 2008, Current protocols in human genetics.

[98]  S. Hirohashi,et al.  Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. , 2008, Cancer research.

[99]  N. Grishin,et al.  PROMALS3D: a tool for multiple protein sequence and structure alignments , 2008, Nucleic acids research.

[100]  Takafumi Suzuki,et al.  Physiological Significance of Reactive Cysteine Residues of Keap1 in Determining Nrf2 Activity , 2008, Molecular and Cellular Biology.

[101]  N. Mizushima,et al.  Autophagy: process and function. , 2007, Genes & development.

[102]  Justina McEvoy,et al.  Subcellular localization and cytoplasmic complex status of endogenous Keap1 , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[103]  Anthony J Alberg,et al.  Epidemiology of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). , 2007, Chest.

[104]  Mona Singh,et al.  Predicting functionally important residues from sequence conservation , 2007, Bioinform..

[105]  Shyam Biswal,et al.  Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. , 2007, Annual review of pharmacology and toxicology.

[106]  M. Hannink,et al.  PGAM5, a Bcl-XL-interacting Protein, Is a Novel Substrate for the Redox-regulated Keap1-dependent Ubiquitin Ligase Complex* , 2006, Journal of Biological Chemistry.

[107]  Masayuki Yamamoto,et al.  Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum. , 2006, The Biochemical journal.

[108]  J. Herman,et al.  Dysfunctional KEAP1–NRF2 Interaction in Non-Small-Cell Lung Cancer , 2006, PLoS medicine.

[109]  Akira Kobayashi,et al.  Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism , 2006, Biological chemistry.

[110]  M. Hannink,et al.  Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling , 2006, The EMBO journal.

[111]  K. Itoh,et al.  Keap1 Recruits Neh2 through Binding to ETGE and DLG Motifs: Characterization of the Two-Site Molecular Recognition Model , 2006, Molecular and Cellular Biology.

[112]  Tsutomu Ohta,et al.  Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. , 2006, Molecular cell.

[113]  Masayuki Yamamoto,et al.  Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. , 2006, Advances in enzyme regulation.

[114]  Feng Ding,et al.  Simple but predictive protein models. , 2005, Trends in biotechnology.

[115]  S. Elsasser,et al.  Delivery of ubiquitinated substrates to protein-unfolding machines , 2005, Nature Cell Biology.

[116]  John M Pezzuto,et al.  Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[117]  Thibault Mayor,et al.  Analysis of Polyubiquitin Conjugates Reveals That the Rpn10 Substrate Receptor Contributes to the Turnover of Multiple Proteasome Targets*S , 2005, Molecular & Cellular Proteomics.

[118]  Yue Xiong,et al.  BTB Protein Keap1 Targets Antioxidant Transcription Factor Nrf2 for Ubiquitination by the Cullin 3-Roc1 Ligase , 2005, Molecular and Cellular Biology.

[119]  Mark Hannink,et al.  Keap1 Is a Redox-Regulated Substrate Adaptor Protein for a Cul3-Dependent Ubiquitin Ligase Complex , 2004, Molecular and Cellular Biology.

[120]  J. Harper,et al.  The Keap1-BTB Protein Is an Adaptor That Bridges Nrf2 to a Cul3-Based E3 Ligase: Oxidative Stress Sensing by a Cul3-Keap1 Ligase , 2004, Molecular and Cellular Biology.

[121]  Masayuki Yamamoto,et al.  Oxidative Stress Sensor Keap1 Functions as an Adaptor for Cul3-Based E3 Ligase To Regulate Proteasomal Degradation of Nrf2 , 2004, Molecular and Cellular Biology.

[122]  R. Deshaies,et al.  Multiubiquitin Chain Receptors Define a Layer of Substrate Selectivity in the Ubiquitin-Proteasome System , 2004, Cell.

[123]  Robert E. Cohen,et al.  Proteasomes and their kin: proteases in the machine age , 2004, Nature Reviews Molecular Cell Biology.

[124]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[125]  P. Picotti,et al.  Probing protein structure by limited proteolysis. , 2004, Acta biochimica Polonica.

[126]  Mark Hannink,et al.  Distinct Cysteine Residues in Keap1 Are Required for Keap1-Dependent Ubiquitination of Nrf2 and for Stabilization of Nrf2 by Chemopreventive Agents and Oxidative Stress , 2003, Molecular and Cellular Biology.

[127]  K. Itoh,et al.  Keap1-dependent Proteasomal Degradation of Transcription Factor Nrf2 Contributes to the Negative Regulation of Antioxidant Response Element-driven Gene Expression* , 2003, Journal of Biological Chemistry.

[128]  H. Huang,et al.  Increased Protein Stability as a Mechanism That Enhances Nrf2-mediated Transcriptional Activation of the Antioxidant Response Element , 2003, The Journal of Biological Chemistry.

[129]  W. S. Valdar,et al.  Scoring residue conservation , 2002, Proteins.

[130]  J. Johnson,et al.  Activation of antioxidant/electrophile-responsive elements in IMR-32 human neuroblastoma cells. , 1999, Archives of biochemistry and biophysics.

[131]  Wojciech Makalowski,et al.  Evolutionary conservation and somatic mutation hotspot maps of p53: correlation with p53 protein structural and functional features , 1999, Oncogene.

[132]  A. Fink Protein aggregation: folding aggregates, inclusion bodies and amyloid. , 1998, Folding & design.

[133]  Thomas L. Madden,et al.  Applications of network BLAST server. , 1996, Methods in enzymology.

[134]  A. Levine The tumor suppressor genes. , 1993, Annual review of biochemistry.

[135]  H. Hansen,et al.  Lung cancer. , 1990, Cancer chemotherapy and biological response modifiers.

[136]  I. Todd,et al.  Bronchial Carcinoma , 1930, Edinburgh Medical Journal.

[137]  T. Morimoto,et al.  Chase of newly synthesized proteins in guinea-pig pancreas with cycloheximide. , 1967, Biochimica et biophysica acta.