Single Step, a general approach for genomic selection

[1]  I Misztal,et al.  Are evaluations on young genotyped animals benefiting from the past generations? , 2014, Journal of dairy science.

[2]  A Legarra,et al.  Assessment of accuracy of genomic prediction for French Lacaune dairy sheep. , 2014, Journal of dairy science.

[3]  Guosheng Su,et al.  Genomic evaluation of both purebred and crossbred performances , 2014, Genetics Selection Evolution.

[4]  P. VanRaden,et al.  Mating programs including genomic relationships and dominance effects. , 2013, Journal of dairy science.

[5]  C. Robert-Granié,et al.  A first step toward genomic selection in the multi-breed French dairy goat population. , 2013, Journal of dairy science.

[6]  Luis Varona,et al.  On the Additive and Dominant Variance and Covariance of Individuals Within the Genomic Selection Scope , 2013, Genetics.

[7]  Ignacy Misztal,et al.  Genetic Evaluation using Unsymmetric Single Step Genomic Methodology with Large Number of Genotypes , 2013 .

[8]  T. Knürr,et al.  Single Step Evaluations using Haplotype Segments , 2013 .

[9]  J. K. Bertrand,et al.  Prediction accuracy for a simulated maternally affected trait of beef cattle using different genomic evaluation models. , 2013, Journal of animal science.

[10]  B. Harris,et al.  Impact of Including a Large Number of Female Genotypes on Genomic Selection , 2013 .

[11]  L. Varona,et al.  Genomic analysis of dominance effects on milk production and conformation traits in Fleckvieh cattle , 2013, Genetics Selection Evolution.

[12]  I Misztal,et al.  Unknown-parent groups in single-step genomic evaluation. , 2013, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[13]  P. Hansen,et al.  Genome-Wide Association Mapping for Identification of Quantitative Trait Loci for Rectal Temperature during Heat Stress in Holstein Cattle , 2013, PloS one.

[14]  Moudud Alam,et al.  A Novel Generalized Ridge Regression Method for Quantitative Genetics , 2013, Genetics.

[15]  P Madsen,et al.  Contribution of domestic production records, Interbull estimated breeding values, and single nucleotide polymorphism genetic markers to the single-step genomic evaluation of milk production. , 2013, Journal of dairy science.

[16]  A. Legarra,et al.  Computation of deregressed proofs for genomic selection when own phenotypes exist with an application in French show-jumping horses. , 2013, Journal of animal science.

[17]  Claude Chevalet,et al.  Variance and Covariance of Actual Relationships between Relatives at One Locus , 2013, PloS one.

[18]  I Misztal,et al.  Methods to approximate reliabilities in single-step genomic evaluation. , 2013, Journal of dairy science.

[19]  P M VanRaden,et al.  Genomic imputation and evaluation using high-density Holstein genotypes. , 2013, Journal of dairy science.

[20]  O. F. Christensen,et al.  Compatibility of pedigree-based and marker-based relationship matrices for single-step genetic evaluation , 2012, Genetics Selection Evolution.

[21]  Dorian J. Garrick,et al.  A Fast EM Algorithm for BayesA-Like Prediction of Genomic Breeding Values , 2012, PloS one.

[22]  P Madsen,et al.  Single-step methods for genomic evaluation in pigs. , 2012, Animal : an international journal of animal bioscience.

[23]  M. Lund,et al.  Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers , 2012, PloS one.

[24]  A Legarra,et al.  Computational strategies for national integration of phenotypic, genomic, and pedigree data in a single-step best linear unbiased prediction. , 2012, Journal of dairy science.

[25]  J. Pösö,et al.  Single step genomic evaluations for the Nordic Red Dairy cattle test day data , 2012 .

[26]  A Legarra,et al.  Genomic selection in the French Lacaune dairy sheep breed. , 2012, Journal of dairy science.

[27]  W. Muir,et al.  Genome-wide association mapping including phenotypes from relatives without genotypes. , 2012, Genetics research.

[28]  M. Lund,et al.  Genomic prediction for Nordic Red Cattle using one-step and selection index blending. , 2012, Journal of dairy science.

[29]  R. Wellmann,et al.  Bayesian models with dominance effects for genomic evaluation of quantitative traits. , 2012, Genetics research.

[30]  Christian Maltecca,et al.  Effectiveness of genomic prediction on milk flow traits in dairy cattle , 2012, Genetics Selection Evolution.

[31]  B. Kinghorn,et al.  A phasing and imputation method for pedigreed populations that results in a single-stage genomic evaluation , 2012, Genetics Selection Evolution.

[32]  J. Woolliams,et al.  The unified approach to the use of genomic and pedigree information in genomic evaluations revisited. , 2011, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[33]  I Misztal,et al.  Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation. , 2011, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[34]  I Misztal,et al.  Effect of different genomic relationship matrices on accuracy and scale. , 2011, Journal of animal science.

[35]  I Misztal,et al.  Bias in genomic predictions for populations under selection. , 2011, Genetics research.

[36]  R. Wellmann,et al.  The contribution of dominance to the understanding of quantitative genetic variation. , 2011, Genetics research.

[37]  A. Legarra,et al.  Use of a reduced set of single nucleotide polymorphisms for genetic evaluation of resistance to Salmonella carrier state in laying hens. , 2011, Poultry science.

[38]  B S Weir,et al.  Variation in actual relationship as a consequence of Mendelian sampling and linkage. , 2011, Genetics research.

[39]  V Ducrocq,et al.  Evidence of biases in genetic evaluations due to genomic preselection in dairy cattle. , 2011, Journal of dairy science.

[40]  C. Robert-Granié,et al.  Improved Lasso for genomic selection. , 2011, Genetics research.

[41]  I Misztal,et al.  Genome-wide marker-assisted selection combining all pedigree phenotypic information with genotypic data in one step: An example using broiler chickens. , 2011, Journal of animal science.

[42]  Andrés Legarra,et al.  A note on the rationale for estimating genealogical coancestry from molecular markers , 2011, Genetics Selection Evolution.

[43]  R. Fernando,et al.  Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model , 2011, Genetics Selection Evolution.

[44]  Ignacy Misztal,et al.  Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information , 2011, Genetics Selection Evolution.

[45]  P. Visscher,et al.  Reconciling the analysis of IBD and IBS in complex trait studies , 2010, Nature Reviews Genetics.

[46]  Zhe Zhang,et al.  Best Linear Unbiased Prediction of Genomic Breeding Values Using a Trait-Specific Marker-Derived Relationship Matrix , 2010, PloS one.

[47]  L. Varona,et al.  A note on mate allocation for dominance handling in genomic selection , 2010, Genetics Selection Evolution.

[48]  B. Harris,et al.  Genomic predictions for New Zealand dairy bulls and integration with national genetic evaluation. , 2010, Journal of dairy science.

[49]  I Misztal,et al.  Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. , 2010, Journal of dairy science.

[50]  M. Lund,et al.  Genomic prediction when some animals are not genotyped , 2010, Genetics Selection Evolution.

[51]  R. Fernando,et al.  Deregressing estimated breeding values and weighting information for genomic regression analyses , 2009, Genetics Selection Evolution.

[52]  I Misztal,et al.  Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. , 2009, Journal of dairy science.

[53]  I Misztal,et al.  A relationship matrix including full pedigree and genomic information. , 2009, Journal of dairy science.

[54]  D. Garrick,et al.  Technical note: Derivation of equivalent computing algorithms for genomic predictions and reliabilities of animal merit. , 2009, Journal of dairy science.

[55]  José Crossa,et al.  Predicting Quantitative Traits With Regression Models for Dense Molecular Markers and Pedigree , 2009, Genetics.

[56]  P. Visscher,et al.  Increased accuracy of artificial selection by using the realized relationship matrix. , 2009, Genetics research.

[57]  R. Fernando,et al.  Genomic selection of purebreds for crossbred performance , 2009, Genetics Selection Evolution.

[58]  P. VanRaden,et al.  Invited review: reliability of genomic predictions for North American Holstein bulls. , 2009, Journal of dairy science.

[59]  P. VanRaden,et al.  Efficient methods to compute genomic predictions. , 2008, Journal of dairy science.

[60]  Andrés Legarra,et al.  Performance of Genomic Selection in Mice , 2008, Genetics.

[61]  I Misztal,et al.  Technical note: Computing strategies in genome-wide selection. , 2008, Journal of dairy science.

[62]  Karin Meyer,et al.  WOMBAT—A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML) , 2007, Journal of Zhejiang University SCIENCE B.

[63]  N Gengler,et al.  A simple method to approximate gene content in large pedigree populations: application to the myostatin gene in dual-purpose Belgian Blue cattle. , 2007, Animal : an international journal of animal bioscience.

[64]  K. J. Abraham,et al.  Improved techniques for sampling complex pedigrees with the Gibbs sampler , 2007, Genetics Selection Evolution.

[65]  Ismo Strandén,et al.  MiX99 - effective solver for large and complex linear mixed models. , 2006 .

[66]  I. D. Boer,et al.  Genetic evaluation methods for populations with dominance and inbreeding , 1993, Theoretical and Applied Genetics.

[67]  D. Gianola,et al.  Optimal properties of the conditional mean as a selection criterion , 1986, Theoretical and Applied Genetics.

[68]  Jean-Jacques Colleau,et al.  An indirect approach to the extensive calculation of relationship coefficients , 2002, Genetics Selection Evolution.

[69]  Ignacy Misztal,et al.  BLUPF90 and related programs (BGF90) , 2002 .

[70]  M. Goddard,et al.  Prediction of total genetic value using genome-wide dense marker maps. , 2001, Genetics.

[71]  M. Lidauer,et al.  Solving large mixed linear models using preconditioned conjugate gradient iteration. , 1999, Journal of dairy science.

[72]  R. Fernando,et al.  Genetic evaluation by BLUP in two-breed terminal crossbreeding systems under dominance. , 1997, Journal of animal science.

[73]  Kermit Ritland,et al.  Estimators for pairwise relatedness and individual inbreeding coefficients , 1996 .

[74]  P M VanRaden,et al.  Derivation, calculation, and use of national animal model information. , 1991, Journal of dairy science.

[75]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[76]  Rick Spence Simple extensions , 1989 .

[77]  M Grossman,et al.  Marker assisted selection using best linear unbiased prediction , 1989, Genetics Selection Evolution.

[78]  R. L. Quaas,et al.  Additive Genetic Model with Groups and Relationships , 1988 .

[79]  C. N. Morris,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[80]  Daniel Gianola,et al.  Bayesian Methods in Animal Breeding Theory , 1986 .

[81]  C. Cockerham,et al.  Analyses of gene frequencies. , 1973, Genetics.

[82]  C. R. Henderson SIRE EVALUATION AND GENETIC TRENDS , 1973 .

[83]  C. Cockerham,et al.  VARIANCE OF GENE FREQUENCIES , 1969, Evolution; international journal of organic evolution.

[84]  W. G. Cochran,et al.  Improvement by Means of Selection , 1951 .

[85]  H. F. Smith,et al.  A DISCRIMINANT FUNCTION FOR PLANT SELECTION , 1936 .