Pulse-compression ghost imaging lidar via coherent detection.

Ghost imaging (GI) lidar, as a novel remote sensing technique, has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target's spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which is helpful to improve the detection sensitivity and detection range.

[1]  Wenlin Gong,et al.  The influence of axial correlation depth of light field on lensless ghost imaging , 2010 .

[2]  Wenlin Gong,et al.  A method to improve the visibility of ghost images obtained by thermal light , 2010 .

[3]  Jeffrey H. Shapiro,et al.  The physics of ghost imaging , 2012, Quantum Information Processing.

[4]  J. Shapiro,et al.  Computational ghost imaging versus imaging laser radar for three-dimensional imaging , 2012, 1212.3253.

[5]  曾贵华,et al.  Three-dimensional ghost imaging based on periodic diffraction correlation imaging , 2014 .

[6]  L G Kazovsky,et al.  All-fiber 90 degrees optical hybrid for coherent communications. , 1987, Applied optics.

[7]  Wenlin Gong,et al.  Ghost imaging lidar via sparsity constraints , 2012, 1203.3835.

[8]  A. Gatti,et al.  High-resolution ghost image and ghost diffraction experiments with thermal light. , 2005, Physical review letters.

[9]  Wenlin Gong,et al.  Three-dimensional ghost imaging lidar via sparsity constraint , 2016, Scientific Reports.

[10]  Leonid G. Kazovsky,et al.  All-fiber 90° optical hybrid for coherent communications , 1987 .

[11]  Wenlin Gong,et al.  Ghost imaging for an axially moving target with an unknown constant speed , 2015 .

[12]  Wenlin Gong,et al.  Ghost “pinhole” imaging in Fraunhofer region , 2009 .

[13]  Brian C. Redman,et al.  Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging , 2007, SPIE Defense + Commercial Sensing.

[14]  Yanfeng Bai,et al.  Ghost imaging for a reflected object with a rough surface , 2010 .

[15]  Wenlin Gong,et al.  Ghost Imaging Lidar via Sparsity Constraints in Real Atmosphere , 2013 .

[16]  Dennis K. Killinger,et al.  Enhanced detection of atmospheric-turbulence-distorted 1-microm coherent lidar returns using a two-dimensional heterodyne detector array. , 1991, Optics letters.

[17]  Wenlin Gong,et al.  Three-dimensional ghost imaging lidar via sparsity constraint , 2013, Scientific Reports.

[18]  A. Gatti,et al.  Differential ghost imaging. , 2010, Physical review letters.

[19]  A. Gatti,et al.  Coherent imaging with pseudo-thermal incoherent light , 2005, quant-ph/0504082.

[20]  Ling-An Wu,et al.  Correlated two-photon imaging with true thermal light. , 2005, Optics letters.

[21]  Rongqing Hui,et al.  Chirped Lidar Using Simplified Homodyne Detection , 2009, Journal of Lightwave Technology.

[22]  De-Zhong Cao,et al.  Geometrical optics in correlated imaging systems , 2004, quant-ph/0407065.

[23]  Y. Shih Quantum Imaging , 2007, IEEE Journal of Selected Topics in Quantum Electronics.