First-principles GW-BSE excitations in organic molecules

Abstract We present a first-principles method for the calculation of optical excitations in nanosystems. The method is based on solving the Bethe–Salpeter equation (BSE) for neutral excitations. The electron self-energy is evaluated within the GW approximation, with dynamical screening effects described within time-dependent density-functional theory in the adiabatic, local approximation. This method is applied to two systems: the benzene molecule, C6H6, and azobenzene, C12H10N2. We give a description of the photoisomerization process of azobenzene after an n–π* excitation, which is consistent with multi-configuration calculations.

[1]  S. Louie,et al.  Photoisomerization of azobenzene from first-principles constrained density-functional calculations. , 2005, The Journal of chemical physics.

[2]  Quasiparticle energies for large molecules: A tight-binding-based Green's-function approach , 2004, cond-mat/0411024.

[3]  Serdar Ogut,et al.  First-principles density-functional calculations for optical spectra of clusters and nanocrystals , 2002 .

[4]  E. Koch,et al.  Optical absorption of benzene vapour for photon energies from 6 eV to 35 eV , 1972 .

[5]  S. Louie,et al.  Electron-hole excitations and optical spectra from first principles , 2000 .

[6]  Luis Moroder,et al.  Single-Molecule Optomechanical Cycle , 2002, Science.

[7]  S. Monti,et al.  Features of the photochemically active state surfaces of azobenzene , 1982 .

[8]  J. P. Doering,et al.  Low‐Energy Electron‐Impact Study of the First, Second, and Third Triplet States of Benzene , 1969 .

[9]  島内 みどり,et al.  G. Herzberg: Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules, D. Van Nostrand, Prinston 1966, 745頁, 16.5×24cm, 8,000円. , 1968 .

[10]  F. Bernardi,et al.  On the mechanism of the cis-trans isomerization in the lowest electronic states of azobenzene: S0, S1, and T1. , 2004, Journal of the American Chemical Society.

[11]  Wolfgang Zinth,et al.  Femtosecond photoisomerization of cis-azobenzene , 1997 .

[12]  Yousef Saad,et al.  Ab initio calculations for large dielectric matrices of confined systems. , 2003, Physical review letters.

[13]  M. Persico,et al.  An ab initio study of the photochemistry of azobenzene. , 1999 .

[14]  Y. Norikane,et al.  Light-driven molecular hinge: a new molecular machine showing a light-intensity-dependent photoresponse that utilizes the trans-cis isomerization of azobenzene. , 2004, Organic letters.

[15]  K. Jordan,et al.  Electron transmission study of the temporary negative ion states of selected benzenoid and conjugated aromatic hydrocarbons , 1987 .

[16]  Takeshi Ishikawa,et al.  Theoretical study on the photoisomerization of azobenzene , 2001 .

[17]  GW Gamma approximation for electron self-energies in semiconductors and insulators. , 1994, Physical review. B, Condensed matter.

[18]  F. Bernardi,et al.  A theoretical study of the lowest electronic states of azobenzene: the role of torsion coordinate in the cis–trans photoisomerization , 2004 .

[19]  Electron-vibration coupling in time-dependent density-functional theory: Application to benzene , 2001 .

[20]  D. Chong Recent Advances in Density Functional Methods Part III , 2002 .

[21]  E. Diau A New Trans-to-Cis Photoisomerization Mechanism of Azobenzene on the S1(n,π*) Surface , 2004 .

[22]  J. L. Franklin,et al.  Ionization and dissociation of diphenyl and condensed-ring aromatics by electron impact. III. Azobenzene , 1981 .

[23]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[24]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[25]  G. Herzberg,et al.  Molecular spectra and molecular structure. Vol.3: Electronic spectra and electronic structure of polyatomic molecules , 1966 .

[26]  Tahei Tahara,et al.  Femtosecond Time-Resolved Fluorescence Study of Photoisomerization of trans-Azobenzene , 2001 .

[27]  J. E. Klepeis,et al.  Calculation of optical absorption spectra of hydrogenated Si clusters: Bethe-Salpeter equation versus time-dependent local-density approximation , 2003 .

[28]  Ichimura,et al.  Light-driven motion of liquids on a photoresponsive surface , 2000, Science.

[29]  Ronald E. Hester,et al.  Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength , 1998 .

[30]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[31]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[32]  Werner Hanke,et al.  Dielectric theory of elementary excitations in crystals , 1978 .