Atomic Layer Deposition Assisted Pattern Multiplication of Block Copolymer Lithography for 5 nm Scale Nanopatterning

5‐nm‐scale line and hole patterning is demonstrated by synergistic integration of block copolymer (BCP) lithography with atomic layer deposition (ALD). While directed self‐assembly of BCPs generates highly ordered line array or hexagonal dot array with the pattern periodicity of 28 nm and the minimum feature size of 14 nm, pattern density multiplication employing ALD successfully reduces the pattern periodicity down to 14 nm and minimum feature size down to 5 nm. Self‐limiting ALD process enable the low temperature, conformal deposition of 5 nm thick spacer layer directly at the surface of organic BCP patterns. This ALD assisted pattern multiplication addresses the intrinsic thermodynamic limitations of low χ BCPs for sub‐10‐nm scale downscaling. Moreover, this approach offers a general strategy for scalable ultrafine nanopatterning without burden for multiple overlay control and high cost lithographic tools.

[1]  Hyun-Woo Lee,et al.  Dependence of the capacitance between an electrode and an electrolyte solution on the thickness of aluminum oxide layers deposited using atomic layer deposition , 2013 .

[2]  Vincent Wiaux,et al.  15nm HP patterning with EUV and SADP: key contributors for improvement of LWR, LER, and CDU , 2013, Advanced Lithography.

[3]  Se‐Hun Kwon,et al.  Highly ordered freestanding titanium oxide nanotube arrays using Si-containing block copolymer lithography and atomic layer deposition , 2013, Nanotechnology.

[4]  Katsuhiko Ariga,et al.  Emerging trends in metal-containing block copolymers: synthesis, self-assembly, and nanomanufacturing applications , 2013 .

[5]  Bong Hoon Kim,et al.  Directed self-assembly of block copolymers for universal nanopatterning , 2013 .

[6]  R. McLean,et al.  Alucone interlayers to minimize stress caused by thermal expansion mismatch between Al₂O₃ films and Teflon substrates. , 2013, ACS applied materials & interfaces.

[7]  Jae Won Jeong,et al.  Directed self-assembly with sub-100 degrees Celsius processing temperature, sub-10 nanometer resolution, and sub-1 minute assembly time. , 2012, Small.

[8]  Christopher J. Ellison,et al.  Polarity-Switching Top Coats Enable Orientation of Sub–10-nm Block Copolymer Domains , 2012, Science.

[9]  Xiaodan Gu,et al.  High Aspect Ratio Sub‐15 nm Silicon Trenches From Block Copolymer Templates , 2012, Advanced materials.

[10]  Chang Su Kim,et al.  Efficient Hydrogenated Amorphous Silicon Thin-Film Solar Cells Using Zinc Oxide Deposited by Atomic Layer Deposition as a Protective Interfacial Layer , 2012 .

[11]  Seth B Darling,et al.  Enhanced Lithographic Imaging Layer Meets Semiconductor Manufacturing Specification a Decade Early , 2012, Advanced materials.

[12]  Christopher J. Ellison,et al.  Oligosaccharide/silicon-containing block copolymers with 5 nm features for lithographic applications. , 2012, ACS nano.

[13]  Hidetami Yaegashi,et al.  Overview: continuous evolution on double-patterning process , 2012, Other Conferences.

[14]  Bong Hoon Kim,et al.  Large-area, highly oriented lamellar block copolymer nanopatterning directed by graphoepitaxially assembled cylinder nanopatterns , 2012 .

[15]  D. Chiang,et al.  The sub-micron hole array in sapphire produced by inductively-coupled plasma reactive ion etching. , 2012, Journal of Nanoscience and Nanotechnology.

[16]  Bong Hoon Kim,et al.  Mussel‐Inspired Block Copolymer Lithography for Low Surface Energy Materials of Teflon, Graphene, and Gold , 2011, Advanced materials.

[17]  Leonidas E. Ocola,et al.  Enhanced Block Copolymer Lithography Using Sequential Infiltration Synthesis , 2011 .

[18]  Won Bo Lee,et al.  Three-dimensional multilayered nanostructures with controlled orientation of microdomains from cross-linkable block copolymers. , 2011, ACS nano.

[19]  Seth B Darling,et al.  A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates. , 2011, ACS nano.

[20]  S. Kim,et al.  Ultralarge-area block copolymer lithographyvia soft graphoepitaxy , 2011 .

[21]  Hidetami Yaegashi,et al.  Novel approaches to implement the self-aligned spacer double-patterning process toward 11-nm node and beyond , 2011, Advanced Lithography.

[22]  Soo-Jin Park,et al.  Sub‐Nanometer Level Size Tuning of a Monodisperse Nanoparticle Array Via Block Copolymer Lithography , 2011 .

[23]  S. Darling,et al.  Nanoscopic Patterned Materials with Tunable Dimensions via Atomic Layer Deposition on Block Copolymers , 2010, Advanced materials.

[24]  Bong Hoon Kim,et al.  Ultralarge-area block copolymer lithography enabled by disposable photoresist prepatterning. , 2010, ACS nano.

[25]  Yong-Hee Lee,et al.  One-dimensional metal nanowire assembly via block copolymer soft graphoepitaxy. , 2010, Nano letters.

[26]  Kwang Ho Kim,et al.  Atomic Layer Deposition of Ta-doped TiO2 Electrodes for Dye-Sensitized Solar Cells , 2010 .

[27]  S. Kim,et al.  Peptide-templating dye-sensitized solar cells , 2010, Nanotechnology.

[28]  Lieve Van Look,et al.  Litho and patterning challenges for memory and logic applications at the 22-nm node , 2010, Advanced Lithography.

[29]  K. Berggren,et al.  A path to ultranarrow patterns using self-assembled lithography. , 2010, Nano letters.

[30]  Mireille Maenhoudt,et al.  Low temperature plasma-enhanced ALD enables cost-effective spacer defined double patterning (SDDP) , 2009, Lithography Asia.

[31]  Ting Xu,et al.  Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. , 2009, Nature materials.

[32]  Bong Hoon Kim,et al.  Spontaneous Lamellar Alignment in Thickness‐Modulated Block Copolymer Films , 2009 .

[33]  C. Grant Willson,et al.  Nanoimprint Lithography Materials Development for Semiconductor Device Fabrication , 2009 .

[34]  C. G. Wilson,et al.  A Decade of Step and Flash Imprint Lithography , 2009 .

[35]  S. Kim,et al.  Highly entangled hollow TiO2nanoribbons templating diphenylalanine assembly , 2009 .

[36]  S. Kim,et al.  Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. , 2009, ACS nano.

[37]  Soojin Park,et al.  Macroscopic 10-Terabit–per–Square-Inch Arrays from Block Copolymers with Lateral Order , 2009, Science.

[38]  Erin M. Lennon,et al.  Evolution of Block Copolymer Lithography to Highly Ordered Square Arrays , 2008, Science.

[39]  Joel K. W. Yang,et al.  Graphoepitaxy of Self-Assembled Block Copolymers on Two-Dimensional Periodic Patterned Templates , 2008, Science.

[40]  Wonjoon Jung,et al.  Nanofabricated concentric ring structures by templated self-assembly of a diblock copolymer. , 2008, Nano letters.

[41]  Sang-Won Kang,et al.  Universal Block Copolymer Lithography for Metals, Semiconductors, Ceramics, and Polymers , 2008 .

[42]  Bong Hoon Kim,et al.  Hierarchical Self‐Assembly of Block Copolymers for Lithography‐Free Nanopatterning , 2008 .

[43]  H. Chung,et al.  TiO2 ∕ Al2O3 ∕ TiO2 Nanolaminated Thin Films for DRAM Capacitor Deposited by Plasma-Enhanced Atomic Layer Deposition , 2008 .

[44]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[45]  M. Pollnau,et al.  Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching , 2007 .

[46]  H. Solak,et al.  Novel Complex Nanostructure from Directed Assembly of Block Copolymers on Incommensurate Surface Patterns , 2007 .

[47]  S. Darling Directing the self-assembly of block copolymers , 2007 .

[48]  Y. Zhang,et al.  Directed Assembly of Lamellae‐ Forming Block Copolymers by Using Chemically and Topographically Patterned Substrates , 2007 .

[49]  C. Ross,et al.  Templated Self‐Assembly of Block Copolymers: Top‐Down Helps Bottom‐Up , 2006 .

[50]  Craig J. Hawker,et al.  Block Copolymer Lithography: Merging “Bottom-Up” with “Top-Down” Processes , 2005 .

[51]  E. W. Edwards,et al.  Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures , 2005, Science.

[52]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[53]  S. George,et al.  Low-Temperature Al2O3 Atomic Layer Deposition , 2004 .

[54]  Jongseung Yoon,et al.  Enabling nanotechnology with self assembled block copolymer patterns , 2003 .

[55]  P. Nealey,et al.  Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates , 2003, Nature.

[56]  Christopher Harrison,et al.  Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter , 1997 .

[57]  J. Skarp,et al.  Atomic layer epitaxy growth of doped zinc oxide thin films from organometals , 1994 .

[58]  Chang Su Kim,et al.  Air-Stable Inverted Organic Solar Cells with an Ultrathin Electron-Transport Layer Made by Atomic Layer Deposition , 2012 .

[59]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[60]  Pekka Soininen,et al.  Perfectly Conformal TiN and Al2O3 Films Deposited by Atomic Layer Deposition , 1999 .