Entanglement Stabilization using Parity Detection and Real-Time Feedback in Superconducting Circuits

Fault tolerant quantum computing relies on the ability to detect and correct errors, which in quantum error correction codes is typically achieved by projectively measuring multi-qubit parity operators and by conditioning operations on the observed error syndromes. Here, we experimentally demonstrate the use of an ancillary qubit to repeatedly measure the ZZ and XX parity operators of two data qubits and to thereby project their joint state into the respective parity subspaces. By applying feedback operations conditioned on the outcomes of individual parity measurements, we demonstrate the real-time stabilization of a Bell state with a fidelity of F ≈ 74% in up to 12 cycles of the feedback loop. We also perform the protocol using Pauli frame updating and, in contrast to the case of real-time stabilization, observe a steady decrease in fidelity from cycle to cycle. The ability to stabilize parity over multiple feedback rounds with no reduction in fidelity provides strong evidence for the feasibility of executing stabilizer codes on timescales much longer than the intrinsic coherence times of the constituent qubits.

[1]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[2]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[3]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[4]  New Results - Continuous generation and stabilization of mesoscopic field superposition states in a quantum circuit , 2014, 1411.0979.

[5]  Andrew A. Houck,et al.  Suppression of Qubit Crosstalk in a Tunable Coupling Superconducting Circuit , 2018, Physical Review Applied.

[6]  R. J. Schoelkopf,et al.  Tracking photon jumps with repeated quantum non-demolition parity measurements , 2013, Nature.

[7]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[8]  J. Gambetta,et al.  Efficient Z gates for quantum computing , 2016, 1612.00858.

[9]  K. B. Whaley,et al.  Supplementary Information for " Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits " , 2014 .

[10]  Austin G. Fowler,et al.  Characterization and reduction of capacitive loss induced by sub-micron Josephson junction fabrication in superconducting qubits , 2017, 1706.00879.

[11]  R. Bowler,et al.  Dissipative production of a maximally entangled steady state of two quantum bits , 2013, Nature.

[12]  Nicholas T. Bronn,et al.  Tunable Superconducting Qubits with Flux-Independent Coherence , 2017, 1702.02253.

[13]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[14]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[15]  L. DiCarlo,et al.  Initialization by measurement of a superconducting quantum bit circuit. , 2012, Physical review letters.

[16]  Mazyar Mirrahimi,et al.  Real-time quantum feedback prepares and stabilizes photon number states , 2011, Nature.

[17]  Matthew Reagor,et al.  Manufacturing low dissipation superconducting quantum processors , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[18]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[19]  Fei Yan,et al.  Tunable Coupling Scheme for Implementing High-Fidelity Two-Qubit Gates , 2018, Physical Review Applied.

[20]  A Wallraff,et al.  Geometric phase and nonadiabatic effects in an electronic harmonic oscillator. , 2012, Physical review letters.

[21]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[22]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[23]  Jay M. Gambetta,et al.  Rapid Driven Reset of a Qubit Readout Resonator , 2015, 1503.01456.

[24]  L. Frunzio,et al.  Autonomously stabilized entanglement between two superconducting quantum bits , 2013, Nature.

[25]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[26]  Y. Salathe,et al.  Deterministic quantum teleportation with feed-forward in a solid state system , 2013, Nature.

[27]  Samuel Boutin,et al.  Resonator reset in circuit QED by optimal control for large open quantum systems , 2016, 1609.03170.

[28]  M. A. Rol,et al.  Active resonator reset in the nonlinear dispersive regime of circuit QED , 2016, 1604.00916.

[29]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[30]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[31]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[32]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[33]  Todd A. Brun,et al.  Quantum Error Correction , 2019, Oxford Research Encyclopedia of Physics.

[34]  Philip Reinhold,et al.  High-contrast qubit interactions using multimode cavity QED. , 2014, Physical review letters.

[35]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[36]  C. K. Andersen,et al.  Rapid High-fidelity Multiplexed Readout of Superconducting Qubits , 2018, Physical Review Applied.

[37]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[38]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[39]  A. Blais,et al.  Qubit parity measurement by parametric driving in circuit QED , 2018, Science Advances.

[40]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[41]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[42]  C. K. Andersen,et al.  Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication , 2017, 1709.01030.

[43]  Maika Takita,et al.  Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture. , 2016, Physical review letters.

[44]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[45]  Alexandre Blais,et al.  Tunable joint measurements in the dispersive regime of cavity QED , 2009, 0911.5322.

[46]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[47]  Y. Salathe,et al.  Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits , 2017, 1701.06933.

[48]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[49]  Nicolaas P. Landsman Decoherence and the quantum-to-classical transition , 2009 .

[50]  L. DiCarlo,et al.  Density-matrix simulation of small surface codes under current and projected experimental noise , 2017, 1703.04136.

[51]  C. C. Bultink,et al.  General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED , 2017, 1711.05336.

[52]  S. M. Girvin,et al.  Implementing and Characterizing Precise Multiqubit Measurements , 2016, 1606.00817.

[53]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[54]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[55]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[56]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[57]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[58]  L. DiCarlo,et al.  Deterministic entanglement of superconducting qubits by parity measurement and feedback , 2013, Nature.

[59]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[60]  Vlad Negnevitsky,et al.  Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register , 2019, Quantum Information and Measurement (QIM) V: Quantum Technologies.

[61]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.