Development of a Functionally Minimized Mutant of the R3C Ligase Ribozyme Offers Insight into the Plausibility of the RNA World Hypothesis

The R3C ligase ribozyme is an artificial ligase ribozyme produced by modification of the ribozyme that lacks cytidine. Here, we attempted to modify the original R3C ribozyme (73 nucleotides) by reducing the number of nucleotides while maintaining the maximum possible catalytic efficiency. By partially deleting both the “grip” (P4 + P5) and “hammer” (P3) stem-loops, we found the critical border to retain activity comparable to that of full-length R3C. The three-way junction structure was necessary to maintain enzymatic function and the stability of the “grip” (P4 + P5) stem had a large influence on the catalytic activity of R3C. The final minimized ribozyme we obtained comprised ~50 nucleotides, comparable to the estimated length of prebiotically synthesized RNA. Our findings suggest that the autocatalytic function in ribozymes is indeed possible to obtain using sequence lengths achievable with prebiotic synthesis.

[1]  G. F. Joyce,et al.  A self-replicating ligase ribozyme , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  A. Ellington,et al.  Optimization and optimality of a short ribozyme ligase that joins non-Watson-Crick base pairings. , 2001, RNA.

[3]  M. Eigen,et al.  The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. , 1977, Die Naturwissenschaften.

[4]  T. Samejima,et al.  Optical rotatory dispersion and circular dichroism of nucleic acids. , 1969, Progress in nucleic acid research and molecular biology.

[5]  N. Pace,et al.  The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme , 1983, Cell.

[6]  D. Bartel,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S14 Tables S1 to S8 References Crystal Structure of the Catalytic Core of an Rna-polymerase Ribozyme , 2022 .

[7]  G. F. Joyce,et al.  Self-Sustained Replication of an RNA Enzyme , 2009, Science.

[8]  N. Sugimoto,et al.  Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. , 1995, Biochemistry.

[9]  G. M. Visser,et al.  Chiral selection in poly(C)-directed synthesis of oligo(G) , 1984, Nature.

[10]  T. Cech,et al.  Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena , 1982, Cell.

[11]  K. Shadan,et al.  Available online: , 2012 .

[12]  G. F. Joyce,et al.  Forty years of in vitro evolution. , 2007, Angewandte Chemie.

[13]  M. Eigen,et al.  Emergence of the Hypercycle , 1979 .

[14]  D. Turner,et al.  Improved free-energy parameters for predictions of RNA duplex stability. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Paul Schimmel,et al.  Chiral-Selective Aminoacylation of an RNA Minihelix , 2004, Science.

[16]  P. Schimmel,et al.  Chiral-selective aminoacylation of an RNA minihelix: Mechanistic features and chiral suppression , 2006, Proceedings of the National Academy of Sciences.

[17]  G. F. Joyce,et al.  The effect of cytidine on the structure and function of an RNA ligase ribozyme. , 2001, RNA.

[18]  Peter Schuster,et al.  A principle of natural self-organization , 1977, Naturwissenschaften.

[19]  Tan Inoue,et al.  De novo synthesis and development of an RNA enzyme. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Michael P Robertson,et al.  The Structural Basis of Ribozyme-Catalyzed RNA Assembly , 2007, Science.

[21]  Andrew Ellington,et al.  In vitro selection of an allosteric ribozyme that transduces analytes to amplicons , 1999, Nature Biotechnology.

[22]  Gerald F. Joyce,et al.  A ribozyme that lacks cytidine , 1999, Nature.

[23]  W. Gilbert Origin of life: The RNA world , 1986, Nature.

[24]  Kiyoshi Asai,et al.  Prediction of RNA secondary structure using generalized centroid estimators , 2009, Bioinform..

[25]  K. Tamura,et al.  Glycols modulate terminator stem stability and ligand-dependency of a glycine riboswitch , 2013, Biosyst..

[26]  J W Szostak,et al.  Structurally complex and highly active RNA ligases derived from random RNA sequences. , 1995, Science.

[27]  K. Tamura Molecular Basis for Chiral Selection in RNA Aminoacylation , 2011, International journal of molecular sciences.

[28]  H. Kröger,et al.  [Protein synthesis]. , 1974, Fortschritte der Medizin.

[29]  J. Ferris Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  Koji Tamura,et al.  Origin of amino acid homochirality: Relationship with the RNA world and origin of tRNA aminoacylation , 2008, Biosyst..

[31]  D. Bartel,et al.  The structural basis of RNA-catalyzed RNA polymerization , 2011, Nature Structural &Molecular Biology.

[32]  I. Tinoco,et al.  Stability of ribonucleic acid double-stranded helices. , 1974, Journal of molecular biology.

[33]  G. F. Joyce,et al.  A complex ligase ribozyme evolved in vitro from a group I ribozyme domain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[34]  R. Micura,et al.  Pyranosyl-RNA: chiroselective self-assembly of base sequences by ligative oligomerization of tetranucleotide-2',3'-cyclophosphates (with a commentary concerning the origin of biomolecular homochirality). , 1997, Chemistry & biology.

[35]  H. Blöcker,et al.  Predicting DNA duplex stability from the base sequence. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Kiyoshi Asai,et al.  CentroidFold: a web server for RNA secondary structure prediction , 2009, Nucleic Acids Res..

[37]  Takuya Umehara,et al.  RNA tetraplex as a primordial peptide synthesis scaffold , 2012, Biosyst..

[38]  D. Bartel,et al.  The secondary structure and sequence optimization of an RNA ligase ribozyme. , 1995, Nucleic acids research.

[39]  K. Tamura Molecular handedness of life: significance of RNA aminoacylation , 2009, Journal of Biosciences.

[40]  S. Arnott,et al.  DNA-RNA hybrid secondary structures. , 1986, Journal of molecular biology.