Investigation on variations of microstructures and mechanical properties along thickness direction of friction stir processed AA2014 aluminum alloy via ultra-rapid cooling

[1]  Jianzhong Zhou,et al.  High-cycle bending fatigue behavior of TC6 titanium alloy subjected to laser shock peening assisted by cryogenic temperature , 2021 .

[2]  Yalin Lu,et al.  Effects of cooling condition on microstructural evolution and mechanical properties of friction stir processed 2A14 aluminum alloy , 2019, Materials Research Express.

[3]  M. Wagner,et al.  Strain partitioning by recurrent shear localization during equal-channel angular pressing of an AA6060 aluminum alloy , 2019, Acta Materialia.

[4]  H. Fujii,et al.  Investigation on microstructure and mechanical properties of cold source assistant friction stir processed AZ31B magnesium alloy , 2019, Materials Science and Engineering: A.

[5]  Kuai-she Wang,et al.  Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions , 2019, Journal of Materials Science & Technology.

[6]  X. Zeng,et al.  Achieving an ultra-high strength in a low alloyed Al alloy via a special structural design , 2019, Materials Science and Engineering: A.

[7]  Lihua Wu,et al.  Fabrication of high-quality Ti joint with ultrafine grains using submerged friction stirring technology and its microstructural evolution mechanism , 2019, Acta Materialia.

[8]  Atul Kumar,et al.  Effects of in-process cryocooling on metallurgical and mechanical properties of friction stir processed Al7075 alloy , 2018, Materials Characterization.

[9]  S. Suwas,et al.  Development of microstructure and texture during single and multiple pass friction stir processing of a strain hardenable aluminium alloy , 2018, Materials Characterization.

[10]  A. Kokabi,et al.  Influence of ambient and cryogenic temperature on friction stir processing of severely deformed aluminum with SiC nanoparticles , 2017 .

[11]  Yufeng Sun,et al.  Clarification of microstructure evolution of aluminum during friction stir welding using liquid CO2 rapid cooling , 2017 .

[12]  R. Valiev,et al.  Effect of annealing on microhardness and electrical resistivity of nanostructured SPD aluminium , 2017 .

[13]  Abhishek Kumar,et al.  Effect of polygonal pin profiles on friction stir processed superplasticity of AA7075 alloy , 2017 .

[14]  D. K. Dwivedi,et al.  Enhancement of mechanical properties and corrosion resistance of friction stir welded joint of AA2014 using water cooling , 2017 .

[15]  C. Cepeda-Jiménez,et al.  Grain size versus microstructural stability in the high strain rate superplastic response of a severely friction stir processed Al-Zn-Mg-Cu alloy , 2017 .

[16]  Ke Huang,et al.  A review of dynamic recrystallization phenomena in metallic materials , 2016 .

[17]  Jingwei Zhao,et al.  Effect of initial base metal temper on microstructure and mechanical properties of friction stir processed Al-7B04 alloy , 2016 .

[18]  S. Pasebani,et al.  Effect of tool rotation rate on constituent particles in a friction stir processed 2024Al alloy , 2015 .

[19]  Chuansong Wu,et al.  Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding , 2015 .

[20]  S. Suwas,et al.  Microstructure and Crystallographic Texture Evolution During the Friction-Stir Processing of a Precipitation-Hardenable Aluminum Alloy , 2015 .

[21]  Z. Zhang,et al.  Influence of water cooling on microstructure and mechanical properties of friction stir welded 2014Al-T6 joints , 2014 .

[22]  C. Cepeda-Jiménez,et al.  Lowering the temperature for high strain rate superplasticity in an Al-Mg-Zn-Cu alloy via cooled friction stir processing , 2013 .

[23]  J. Lippold,et al.  Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219 , 2013 .

[24]  Xiuli Feng,et al.  Effect of post-processing heat treatment on microstructure and microhardness of water-submerged friction stir processed 2219-T6 aluminum alloy , 2013 .

[25]  B. Xiao,et al.  High tensile ductility via enhanced strain hardening in ultrafine-grained Cu , 2012 .

[26]  S. Babu,et al.  Effect of grain size refinement and precipitation reactions on strengthening in friction stir processed Al–Cu alloys , 2011 .

[27]  K. Lu,et al.  Effects of stacking fault energy, strain rate and temperature on microstructure and strength of nanostructured Cu–Al alloys subjected to plastic deformation , 2011 .

[28]  Yongxian Huang,et al.  Mechanical properties of underwater friction stir welded 2219 aluminum alloy , 2010 .

[29]  Saiyi Li,et al.  Observation and modeling of the through-thickness texture gradient in commercial-purity aluminum sheets processed by accumulative roll-bonding , 2010 .

[30]  A. Yazdipour,et al.  Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083 , 2009 .

[31]  Y. Chen,et al.  Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys , 2009 .

[32]  T. Mcnelley,et al.  Recrystallization mechanisms during friction stir welding/processing of aluminum alloys , 2008 .

[33]  J. C. Huang,et al.  Achieving ultrafine grain size in Mg–Al–Zn alloy by friction stir processing , 2007 .

[34]  R. Mishra,et al.  Ab Initio Study of the Effect of Solute Atoms on Stacking Fault Energy in Aluminum , 2007 .

[35]  Thomas J. Lienert,et al.  Three-dimensional heat and material flow during friction stir welding of mild steel , 2007 .

[36]  Tracy W. Nelson,et al.  Microstructure evolution during FSW/FSP of high strength aluminum alloys , 2005 .

[37]  P. Prangnell,et al.  Grain structure formation during friction stir welding observed by the ‘stop action technique’ , 2005 .

[38]  L. Murr,et al.  Low-Temperature Friction-Stir Welding of 2024 Aluminum , 1999 .

[39]  T. Schulthess,et al.  Systematic study of stacking fault energies of random Al-based alloys , 1998 .

[40]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[41]  C. M. Sellars,et al.  Effect of composition and process variables on Nb(C, N) precipitation in niobium microalloyed austenite , 1987 .

[42]  Wei Sun,et al.  Influence of process parameters on the microstructural evolution and mechanical characterisations of friction stir welded Al-Mg-Si alloy , 2020, Journal of Materials Processing Technology.

[43]  A. Devaraju,et al.  Influence of Cryogenic cooling (Liquid Nitrogen) on Microstructure and Mechanical properties of Friction stir welded 2014-T6 Aluminum alloy , 2018 .