A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection

[1]  Skylar W. Marvel,et al.  Maternal smoking impacts key biological pathways in newborns through epigenetic modification in Utero , 2016, BMC Genomics.

[2]  Zhiwu Zhang,et al.  GAPIT Version 2: An Enhanced Integrated Tool for Genomic Association and Prediction , 2016, The plant genome.

[3]  P. Peterlongo,et al.  SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population , 2016, BMC Genomics.

[4]  Xiaohui Li,et al.  Molecular characterization and marker development for hexaploid wheat-specific HMW glutenin subunit 1By18 gene , 2015, Molecular Breeding.

[5]  J. Vermeesch,et al.  GBSX: a toolkit for experimental design and demultiplexing genotyping by sequencing experiments , 2015, BMC Bioinformatics.

[6]  G. Aubert,et al.  Genetic diversity and trait genomic prediction in a pea diversity panel , 2015, BMC Genomics.

[7]  M. Grusak,et al.  Association mapping of agronomic and quality traits in USDA pea single-plant collection , 2015, Molecular Breeding.

[8]  Jeremy D. Edwards,et al.  Analysis of wild-species introgressions in tomato inbreds uncovers ancestral origins , 2014, BMC Plant Biology.

[9]  Shelby L. Bidwell,et al.  An improved genome release (version Mt4.0) for the model legume Medicago truncatula , 2014, BMC Genomics.

[10]  A. Flavell,et al.  Geographical Gradient of the eIF4E Alleles Conferring Resistance to Potyviruses in Pea (Pisum) Germplasm , 2014, PloS one.

[11]  Chung Yi Tang,et al.  An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example , 2014, BMC Genomics.

[12]  J. Poland,et al.  Application of Genotyping-by-Sequencing on Semiconductor Sequencing Platforms: A Comparison of Genetic and Reference-Based Marker Ordering in Barley , 2013, PloS one.

[13]  T. Warkentin,et al.  Characterization of 169 diverse pea germplasm accessions for agronomic performance, Mycosphaerella blight resistance and nutritional profile , 2013, Genetic Resources and Crop Evolution.

[14]  Robert J. Elshire,et al.  Switchgrass Genomic Diversity, Ploidy, and Evolution: Novel Insights from a Network-Based SNP Discovery Protocol , 2013, PLoS genetics.

[15]  Veerle Fack,et al.  Core Hunter II: fast core subset selection based on multiple genetic diversity measures using Mixed Replica search , 2012, BMC Bioinformatics.

[16]  Meng Li,et al.  Genetics and population analysis Advance Access publication July 13, 2012 , 2012 .

[17]  H. Aukema,et al.  Pulse consumption in Canadian adults influences nutrient intakes. , 2012, The British journal of nutrition.

[18]  M. Grusak,et al.  Genetic diversity, population structure and genome-wide marker-trait association analysis emphasizing seed nutrients of the USDA pea (Pisum sativum L.) core collection , 2012, Genes & Genomics.

[19]  Kyungsook Han,et al.  Modeling the interactions of Alzheimer-related genes from the whole brain microarray data and diffusion tensor images of human brain , 2012, BMC Bioinformatics.

[20]  A. Flavell,et al.  Pea (Pisum sativum L.) in the Genomic Era , 2012 .

[21]  A. Flavell,et al.  Genetic diversity in European Pisum germplasm collections , 2012, Theoretical and Applied Genetics.

[22]  C. Coyne,et al.  Mapping QTL for Fusarium wilt Race 2 partial resistance in pea (Pisum sativum) , 2012 .

[23]  A. Amores,et al.  Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences , 2011, G3: Genes | Genomes | Genetics.

[24]  M. Blaxter,et al.  Genome-wide genetic marker discovery and genotyping using next-generation sequencing , 2011, Nature Reviews Genetics.

[25]  Anil Kumar Singh,et al.  Molecular mapping for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary , 2011, Theoretical and Applied Genetics.

[26]  Robert J. Elshire,et al.  A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species , 2011, PloS one.

[27]  D. Rubiales,et al.  Confirmation that the Er3 gene, conferring resistance to Erysiphe pisi in pea, is a different gene from er1 and er2 genes , 2011 .

[28]  J. Corander,et al.  Phylogeny, phylogeography and genetic diversity of the Pisum genus , 2010, Plant Genetic Resources.

[29]  R. Hellens,et al.  Identification of Mendel's White Flower Character , 2010, PloS one.

[30]  Paul D. Shaw,et al.  The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis , 2010, BMC Evolutionary Biology.

[31]  Dominique Lavenier,et al.  Paired-end read length lower bounds for genome re-sequencing , 2009, BMC Bioinformatics.

[32]  Chris Thachuk,et al.  Core Hunter: an algorithm for sampling genetic resources based on multiple genetic measures , 2009, BMC Bioinformatics.

[33]  T. Hartman,et al.  Consumption of dry beans, peas, and lentils could improve diet quality in the US population. , 2009, Journal of the American Dietetic Association.

[34]  M. Ambrose,et al.  Ballistic seed dispersal and associated seed shadow in wild Pisum germplasm , 2008 .

[35]  A. Flavell,et al.  Effort towards a world pea (Pisum sativum L.) germplasm core collection: The case for common markers and data compatibility. , 2008 .

[36]  P. VanRaden,et al.  Efficient methods to compute genomic predictions. , 2008, Journal of dairy science.

[37]  V. S. Bogdanova,et al.  Relationship of wild and cultivated forms of Pisum L. as inferred from an analysis of three markers, of the plastid, mitochondrial and nuclear genomes , 2008, Genetic Resources and Crop Evolution.

[38]  M. McMullen,et al.  Genetic Design and Statistical Power of Nested Association Mapping in Maize , 2008, Genetics.

[39]  Pavel Neumann,et al.  Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula , 2007, BMC Genomics.

[40]  N. Weeden Genetic Changes Accompanying the Domestication of Pisum sativum: Is there a Common Genetic Basis to the ‘Domestication Syndrome’ for Legumes? , 2007, Annals of botany.

[41]  Hiroshi Suzuki,et al.  Loss of Parp-1 affects gene expression profile in a genome-wide manner in ES cells and liver cells , 2007, BMC Genomics.

[42]  Joachim Selbig,et al.  pcaMethods - a bioconductor package providing PCA methods for incomplete data , 2007, Bioinform..

[43]  E. Pfeffer,et al.  Effect of Graded Replacement of Soybean Meal by Faba Beans (Vicia faba L.) or Field Peas (Pisum sativum L.) in Rations for Laying Hens on Egg Production and Quality , 2007 .

[44]  M. Wojciechowski,et al.  Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. , 2005, Systematic biology.

[45]  T. Warkentin,et al.  Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters. , 2005, Genome.

[46]  G. Aubert,et al.  Genetic diversity within Pisum sativum using protein- and PCR-based markers , 2004, Theoretical and Applied Genetics.

[47]  M. Knox,et al.  Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. , 2003, Molecular biology and evolution.

[48]  M. Bautista-Teruel,et al.  Utilization of feed pea, Pisum sativum, meal as a protein source in practical diets for juvenile tiger shrimp, Penaeus monodon , 2003 .

[49]  G. Aubert,et al.  Microsatellite polymorphism in Pisum sativum , 2001 .

[50]  P. Moncada,et al.  Quantitative trait loci for yield and yield components in an Oryza sativa×Oryza rufipogon BC2F2 population evaluated in an upland environment , 2001, Theoretical and Applied Genetics.

[51]  Lukas Wagner,et al.  A Greedy Algorithm for Aligning DNA Sequences , 2000, J. Comput. Biol..

[52]  D. Bastianelli,et al.  Feeding value of pea ( Pisum sativum , L.) 1. Chemical composition of different categories of pea , 1998 .

[53]  M. Knox,et al.  Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea , 1998, Molecular and General Genetics MGG.

[54]  W. J. Lamont,et al.  Fall-planted Cover Crops Support Good Yields of Muskmelons , 1996 .

[55]  E. Okine,et al.  Effects of feeding peas to high-producing dairy cows , 1995 .

[56]  C. Simon,et al.  Development and Use of Core Subsets of Cool-season Food Legume Germplasm Collections , 1995 .

[57]  T. E. Thompson,et al.  Use of Core Subsets in Developing Germplasm Collections of Clonally Propagated Crops , 1995 .

[58]  E. Dirlewanger,et al.  Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. , 1994, Theoretical and Applied Genetics.

[59]  V. S. Bogdanova,et al.  Geographic patterns of histone H1 allelic frequencies formed in the course of Pisum sativum L. (pea) cultivation , 1993, Heredity.

[60]  N. Vavilov Origin and geography of cultivated plants , 1993 .

[61]  R. McGee,et al.  Inheritance of Stringless Pod in Pisum sativum L. , 1992 .

[62]  A. Errico,et al.  Karyotype studies on Pisum fulvum and Pisum sativum, using a chromosome image analysis system ' , 1991 .

[63]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[64]  T. Wehner,et al.  Effect of the n Gene on Pea Pod Characteristics1 , 1981, Journal of the American Society for Horticultural Science.

[65]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[66]  D. Zohary,et al.  Domestication of Pulses in the Old World , 1973, Science.

[67]  H. Belshaw,et al.  The Food and Agriculture Organization of the United Nations , 1947, International Organization.

[68]  Thorsten Dickhaus,et al.  Simultaneous Statistical Inference , 2014, Springer Berlin Heidelberg.

[69]  Andy South,et al.  rworldmap : a new R package for mapping global data , 2011, R J..

[70]  J. Silva,et al.  Consequences of Plant Breeding on Genetic Diversity , 2010 .

[71]  M. El-Komy,et al.  Expression of Sl-WRKY1 Transcription Factor During B. cinerea tomato Interaction in Resistant and Susceptible Cultivars , 2010 .

[72]  Long Yan,et al.  Analysis of a diverse global Pisum sp. collection and comparison to a Chinese local P. sativum collection with microsatellite markers , 2008, Theoretical and Applied Genetics.

[73]  M. Grusak,et al.  USDA-ARS refined pea core collection for 26 quantitative traits , 2005 .

[74]  Marianne Karpenstein-Machan,et al.  Biomass yield and nitrogen fixation of legumes monocropped and intercropped with rye and rotation effects on a subsequent maize crop , 2004, Plant and Soil.

[75]  N. Weeden,et al.  Identification of tolerance to Fusarium solani in Pisum sativum ssp. elatius. , 2004 .

[76]  M. Lanza,et al.  Peas (Pisum sativum L.) as an alternative protein source in lamb diets: growth performances, and carcass and meat quality , 2003 .

[77]  W. Kaiser,et al.  Genetic basis for pulse crop improvement: collection, preservation and genetic variation in relation to needed traits. , 1988 .