Topology of a G-quadruplex DNA formed by C9orf72 hexanucleotide repeats associated with ALS and FTD

Abnormal expansions of an intronic hexanucleotide GGGGCC (G4C2) repeat of the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Previous studies suggested that the C9orf72 hexanucleotide repeat expansion (HRE), either as DNA or the transcribed RNA, can fold into G-quadruplexes with distinct structures. These structural polymorphisms lead to abortive transcripts and contribute to the pathogenesis of ALS and FTD. Using circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy, we analyzed the structures of C9orf72 HRE DNA with various G4C2 repeats. They exhibited diverse G-quadruplex folds in potassium ions. Furthermore, we determined the topology of a G-quadruplex formed by d(G4C2)4. It favors a monomeric fold and forms a chair-type G-quadruplex with a four-layer antiparallel G-tetra core and three edgewise loops, which is distinct from known structures of chair-type G-quadruplexes. Our findings highlight the conformational heterogeneity of C9orf72 HRE DNA, and may lay the necessary structural basis for designing small molecules for the modulation of ALS/FTD pathogenesis.

[1]  Shankar Balasubramanian,et al.  Prevalence of quadruplexes in the human genome , 2005, Nucleic acids research.

[2]  R. Petersen,et al.  Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype , 2012, Neurobiology of Aging.

[3]  M. Gorospe,et al.  RNA-binding protein nucleolin in disease , 2012, RNA biology.

[4]  C. E. Pearson,et al.  The Disease-associated r(GGGGCC)n Repeat from the C9orf72 Gene Forms Tract Length-dependent Uni- and Multimolecular RNA G-quadruplex Structures* , 2013, The Journal of Biological Chemistry.

[5]  Patrick G. Shaw,et al.  C9orf72 Nucleotide Repeat Structures Initiate Molecular Cascades of Disease , 2014, Nature.

[6]  A. Phan,et al.  Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers. , 2009, Journal of the American Chemical Society.

[7]  C. Broeckhoven,et al.  The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. , 2012 .

[8]  L. Hurley,et al.  Making sense of G‐quadruplex and i‐motif functions in oncogene promoters , 2010, The FEBS journal.

[9]  T. Yeates,et al.  Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d(GGTTGGTGTGGTTGG). , 1996, Journal of molecular biology.

[10]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[11]  D. Cleveland,et al.  TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. , 2010, Human molecular genetics.

[12]  J. Ule,et al.  Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic , 2013, Cell reports.

[13]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[14]  Dinshaw J. Patel,et al.  Human telomere, oncogenic promoter and 5′-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics , 2007, Nucleic acids research.

[15]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[16]  Stephen Neidle,et al.  Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? , 2011, Nature Reviews Drug Discovery.

[17]  O. Hardiman,et al.  Amyotrophic lateral sclerosis , 2011, The Lancet.

[18]  Sarah W. Burge,et al.  Quadruplex DNA: sequence, topology and structure , 2006, Nucleic acids research.

[19]  N. Graff-Radford,et al.  FRONTOTEMPORAL DEMENTIA , 2004, Seminars in neurology.

[20]  S. Neidle,et al.  Highly prevalent putative quadruplex sequence motifs in human DNA , 2005, Nucleic acids research.

[21]  G. Parkinson,et al.  C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes , 2012, Scientific Reports.

[22]  A. Phan,et al.  A site-specific low-enrichment (15)N,(13)C isotope-labeling approach to unambiguous NMR spectral assignments in nucleic acids. , 2002, Journal of the American Chemical Society.

[23]  Julian Leon Huppert,et al.  Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. , 2008, Chemical Society reviews.

[24]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[25]  B. Rogelj,et al.  Unconventional features of C9ORF72 expanded repeat in amyotrophic lateral sclerosis and frontotemporal lobar degeneration , 2014, Neurobiology of Aging.

[26]  C. van Broeckhoven,et al.  The molecular basis of the frontotemporal lobar degeneration–amyotrophic lateral sclerosis spectrum , 2012, Annals of medicine.

[27]  A. Phan,et al.  NMR spectroscopy of G-quadruplexes. , 2012, Methods.

[28]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[29]  Stephen Neidle,et al.  Human telomeric G‐quadruplex: The current status of telomeric G‐quadruplexes as therapeutic targets in human cancer , 2010, The FEBS journal.

[30]  M. Mesulam,et al.  Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers , 2014, Neurobiology of Aging.

[31]  A. Isaacs,et al.  C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci , 2013, Acta Neuropathologica.

[32]  J. Rothstein,et al.  RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia , 2013, Proceedings of the National Academy of Sciences.

[33]  I. Mackenzie,et al.  TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia , 2010, The Lancet Neurology.

[34]  Katrin Paeschke,et al.  DNA secondary structures: stability and function of G-quadruplex structures , 2012, Nature Reviews Genetics.

[35]  I. Mackenzie,et al.  Advances in understanding the molecular basis of frontotemporal dementia. , 2012, Nature reviews. Neurology.

[36]  A. Phan Long-range imino proton-13C J-couplings and the through-bond correlation of imino and non-exchangeable protons in unlabeled DNA , 2000, Journal of biomolecular NMR.

[37]  Janez Plavec,et al.  Characterization of DNA G-quadruplex species forming from C9ORF72 G4C2-expanded repeats associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration , 2015, Neurobiology of Aging.

[38]  L. Rowland,et al.  Amyotrophic Lateral Sclerosis , 1980, Neurology.

[39]  Shankar Balasubramanian,et al.  G-Quadruplex structures are stable and detectable in human genomic DNA , 2013, Nature Communications.

[40]  Kevin F. Bieniek,et al.  Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.