Molecular architecture of the Nup84–Nup145C–Sec13 edge element in the nuclear pore complex lattice

[1]  M Lugg,et al.  The hole picture , 2009 .

[2]  Yoko Shibata,et al.  Mechanisms shaping the membranes of cellular organelles. , 2009, Annual review of cell and developmental biology.

[3]  J. Whittle,et al.  Architectural Nucleoporins Nup157/170 and Nup133 Are Structurally Related and Descend from a Second Ancestral Element* , 2009, The Journal of Biological Chemistry.

[4]  T. Schwartz,et al.  The structure of the scaffold nucleoporin Nup120 reveals a new and unexpected domain architecture. , 2009, Structure.

[5]  J. Whittle,et al.  The nuclear pore complex has entered the atomic age. , 2009, Structure.

[6]  Martin Kampmann,et al.  Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex , 2009, Nature Structural &Molecular Biology.

[7]  D. Goldfarb,et al.  The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly , 2009, The Journal of cell biology.

[8]  T. Kieselbach,et al.  Role of the Ndc1 interaction network in yeast nuclear pore complex assembly and maintenance , 2009, The Journal of cell biology.

[9]  T. Schwartz,et al.  A lattice model of the nuclear pore complex , 2009, Communicative & integrative biology.

[10]  Charles Simon Bond,et al.  ALINE: a WYSIWYG protein-sequence alignment editor for publication-quality alignments. , 2009, Acta crystallographica. Section D, Biological crystallography.

[11]  O. Medalia,et al.  Structural analysis of the nuclear pore complex by integrated approaches. , 2009, Current opinion in structural biology.

[12]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[13]  G. Blobel,et al.  A fence-like coat for the nuclear pore membrane. , 2008, Molecular cell.

[14]  Eric D. Spear,et al.  Structural Evidence for Common Ancestry of the Nuclear Pore Complex and Vesicle Coats , 2008, Science.

[15]  M. D'Angelo,et al.  Structure, dynamics and function of nuclear pore complexes. , 2008, Trends in cell biology.

[16]  S. Stagg,et al.  Structural Basis for Cargo Regulation of COPII Coat Assembly , 2008, Cell.

[17]  S. Jeudy,et al.  Structural and functional studies of Nup107/Nup133 interaction and its implications for the architecture of the nuclear pore complex. , 2008, Molecular cell.

[18]  J. Ellenberg,et al.  Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells , 2008, The Journal of cell biology.

[19]  Ed Hurt,et al.  Structural basis of the nic96 subcomplex organization in the nuclear pore channel. , 2008, Molecular cell.

[20]  S. Jeudy,et al.  Crystal Structure of Nucleoporin Nic96 Reveals a Novel, Intricate Helical Domain Architecture* , 2007, Journal of Biological Chemistry.

[21]  B. Chait,et al.  The molecular architecture of the nuclear pore complex , 2007, Nature.

[22]  A. Hodel,et al.  Molecular Determinants of Binding between Gly-Leu-Phe-Gly Nucleoporins and the Nuclear Pore Complex* , 2007, Journal of Biological Chemistry.

[23]  Friedrich Förster,et al.  Snapshots of nuclear pore complexes in action captured by cryo-electron tomography , 2007, Nature.

[24]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[25]  D. Görlich,et al.  A Saturated FG-Repeat Hydrogel Can Reproduce the Permeability Properties of Nuclear Pore Complexes , 2007, Cell.

[26]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[27]  J. Mancias,et al.  Structure and Organization of Coat Proteins in the COPII Cage , 2007, Cell.

[28]  Y. Hayashizaki,et al.  The crystal structure of mouse Nup35 reveals atypical RNP motifs and novel homodimerization of the RRM domain. , 2006, Journal of molecular biology.

[29]  Elizabeth J. Tran,et al.  Dynamic Nuclear Pore Complexes: Life on the Edge , 2006, Cell.

[30]  Narayanan Eswar,et al.  Simple fold composition and modular architecture of the nuclear pore complex , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[32]  B. Böttcher,et al.  Reconstitution of Nup157 and Nup145N into the Nup84 Complex*[boxs] , 2005, Journal of Biological Chemistry.

[33]  T. Schwartz Modularity within the architecture of the nuclear pore complex. , 2005, Current opinion in structural biology.

[34]  A. Fedorov,et al.  Phased translation function revisited: structure solution of the cofilin-homology domain from yeast actin-binding protein 1 using six-dimensional searches. , 2005, Acta crystallographica. Section D, Biological crystallography.

[35]  S. Harrison,et al.  Molecular model for a complete clathrin lattice from electron cryomicroscopy , 2004, Nature.

[36]  G. Blobel,et al.  Structural and functional analysis of Nup133 domains reveals modular building blocks of the nuclear pore complex , 2004, The Journal of cell biology.

[37]  Philip E. Bourne,et al.  A New Scoring Function and Associated Statistical Significance for Structure Alignment by CE , 2004, J. Comput. Biol..

[38]  B. Chait,et al.  Components of Coated Vesicles and Nuclear Pore Complexes Share a Common Molecular Architecture , 2004, PLoS biology.

[39]  J. Ellenberg,et al.  Mapping the dynamic organization of the nuclear pore complex inside single living cells , 2004, Nature Cell Biology.

[40]  M. Stroud,et al.  Life on the edge , 2004, Nature.

[41]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[42]  M. Magnasco,et al.  Virtual gating and nuclear transport: the hole picture. , 2003, Trends in cell biology.

[43]  Vincent Galy,et al.  Caenorhabditis elegans nucleoporins Nup93 and Nup205 determine the limit of nuclear pore complex size exclusion in vivo. , 2003, Molecular biology of the cell.

[44]  Ueli Aebi,et al.  Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. , 2003, Journal of molecular biology.

[45]  M. Hetzer,et al.  The Conserved Nup107-160 Complex Is Critical for Nuclear Pore Complex Assembly , 2003, Cell.

[46]  E. Zimmerman,et al.  Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. , 2003, Molecular cell.

[47]  Karsten Weis,et al.  Regulating Access to the Genome Nucleocytoplasmic Transport throughout the Cell Cycle , 2003, Cell.

[48]  G. Blobel,et al.  Depletion of a single nucleoporin, Nup107, prevents the assembly of a subset of nucleoporins into the nuclear pore complex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Ueli Aebi,et al.  Modular self‐assembly of a Y‐shaped multiprotein complex from seven nucleoporins , 2002, The EMBO journal.

[50]  Ueli Aebi,et al.  Structure and Assembly of the Nup84p Complex , 2000, The Journal of cell biology.

[51]  B. Chait,et al.  The Yeast Nuclear Pore Complex: Composition, Architecture, and Transport Mechanism , 2000 .

[52]  Axel T. Brunger,et al.  X-ray structure determination at low resolution , 2009 .

[53]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[54]  Eric Blanc,et al.  Automated structure solution with autoSHARP. , 2007, Methods in molecular biology.

[55]  G. Blobel,et al.  Architecture of a Coat for the Nuclear Pore Membrane , 2007, Cell.

[56]  G. Drin,et al.  A general amphipathic alpha-helical motif for sensing membrane curvature. , 2007, Nature structural & molecular biology.

[57]  Michael M. Kozlov,et al.  How proteins produce cellular membrane curvature , 2006, Nature Reviews Molecular Cell Biology.

[58]  E. Hurt,et al.  Yeast genetics to dissect the nuclear pore complex and nucleocytoplasmic trafficking. , 1997, Annual review of genetics.

[59]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[60]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[61]  K Henrick,et al.  Electronic Reprint Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions , 2022 .