Increase of COP in the thermoelectric refrigeration by the optimization of heat dissipation

Abstract A device for the dissipation the heat from the hot side of Peltier pellets in thermoelectric refrigeration, based on the principle of a thermosyphon with phase change is presented. The device design was accomplished by analytic calculations on the base of a semi-empirical formulation and simulations with computational fluids dynamics. In the experimental optimization phase, a prototype of thermosyphon with a thermal resistance of 0.110 K/W has been development, dissipating the heat of a Peltier pellet with the size of 40 × 40 mm, what is an improvement of 36% in the thermal resistance, with regard to the commercial fin dissipater. With the construction of the two prototypes of thermoelectric domestic refrigerators, one of them with the device developed, and the other with a conventional fins dissipater, it could be experimentally proved that the use of thermosyphon with phase change increases the coefficient of performance up to 32%.