Unveiled Ferroelectricity in Well‐Known Non‐Ferroelectric Materials and Their Semiconductor Applications

[1]  Xinyu Wang,et al.  Doping effects on the ferroelectric properties of wurtzite nitrides , 2023, Applied Physics Letters.

[2]  E. Yalon,et al.  Sub-Nanosecond Switching of Si:HfO2 Ferroelectric Field-Effect Transistor. , 2023, Nano letters.

[3]  Ju Yong Park,et al.  A perspective on the physical scaling down of hafnia-based ferroelectrics , 2023, Nanotechnology.

[4]  Se Hyun Kim,et al.  Perspective on Ferroelectric Devices: Lessons from Interfacial Chemistry , 2023, Chemistry of Materials.

[5]  Jacob L. Jones,et al.  The Influence of Crystallographic Texture on Structural and Electrical Properties in Ferroelectric Hf 0.5Zr 0.5O 2 , 2022, SSRN Electronic Journal.

[6]  Nan Wang,et al.  Scandium-Doped Aluminum Nitride for Acoustic Wave Resonators, Filters, and Ferroelectric Memory Applications , 2022, ACS Applied Electronic Materials.

[7]  S. Slesazeck,et al.  From Ferroelectric Material Optimization to Neuromorphic Devices , 2022, Advanced materials.

[8]  Takao Shimizu,et al.  Lattice deformation and phase transition of aluminum nitride studied by density functional theory calculations , 2022, Journal of the Ceramic Society of Japan.

[9]  B. Jena,et al.  Investigation of Nanosheet-FET Based Logic Gates at Sub-7 nm Technology Node for Digital IC Applications , 2022, Silicon.

[10]  C. Grigoropoulos,et al.  Emergent ferroelectricity in subnanometer binary oxide films on silicon , 2022, Science.

[11]  G. Brennecka,et al.  A Landau–Devonshire analysis of strain effects on ferroelectric Al1−xScxN , 2022, Applied Physics Letters.

[12]  C. Hwang,et al.  The fundamentals and applications of ferroelectric HfO2 , 2022, Nature Reviews Materials.

[13]  C. S. Hwang,et al.  Review of Semiconductor Flash Memory Devices for Material and Process Issues. , 2022, Advanced materials.

[14]  Yuewei Yin,et al.  High-precision and linear weight updates by subnanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing , 2022, Nature communications.

[15]  Jacob L. Jones,et al.  Many routes to ferroelectric HfO2: A review of current deposition methods , 2022, Journal of Vacuum Science & Technology A.

[16]  S. Jeon,et al.  Selector-less Ferroelectric Tunnel Junctions by Stress Engineering and an Imprinting Effect for High-Density Cross-Point Synapse Arrays. , 2021, ACS applied materials & interfaces.

[17]  H. Funakubo,et al.  Effect of Film Microstructure on Domain Nucleation and Intrinsic Switching in Ferroelectric Y:HfO2 Thin Film Capacitors , 2021, Advanced Functional Materials.

[18]  Qi Liu,et al.  Compact artificial neuron based on anti-ferroelectric transistor , 2021, Nature Communications.

[19]  S. Parkin,et al.  Energy-efficient memcapacitor devices for neuromorphic computing , 2021, Nature Electronics.

[20]  M. Tian,et al.  A Janovec‐Kay‐Dunn‐Like Behavior at Thickness Scaling in Ultra‐Thin Antiferroelectric ZrO2 Films , 2021, Advanced Electronic Materials.

[21]  Hyun Hwi Lee,et al.  Unveiling the Origin of Robust Ferroelectricity in Sub-2 nm Hafnium Zirconium Oxide Films. , 2021, ACS applied materials & interfaces.

[22]  O. Ambacher,et al.  On the exceptional temperature stability of ferroelectric Al1-xScxN thin films , 2021, Applied Physics Letters.

[23]  Dong Hyun Lee,et al.  Domains and domain dynamics in fluorite-structured ferroelectrics , 2021 .

[24]  N. Tamura,et al.  Interface control of tetragonal ferroelectric phase in ultrathin Si-doped HfO2 epitaxial films , 2021 .

[25]  H. Funakubo,et al.  Large thermal hysteresis of ferroelectric transition in HfO2-based ferroelectric films , 2021 .

[26]  S. Lim,et al.  Nonlinear domain wall velocity in ferroelectric Si-doped HfO2 thin film capacitors , 2021, 2103.07160.

[27]  Michael J. Hoffmann,et al.  Next generation ferroelectric materials for semiconductor process integration and their applications , 2021, Journal of Applied Physics.

[28]  S. Jeon,et al.  High‐Performance and High‐Endurance HfO2‐Based Ferroelectric Field‐Effect Transistor Memory with a Spherical Recess Channel , 2021, physica status solidi (RRL) – Rapid Research Letters.

[29]  In Won Yeu,et al.  Atomistic Understanding of the Ferroelectric Properties of a Wurtzite‐Structure (AlN)n/(ScN)m Superlattice , 2021, physica status solidi (RRL) – Rapid Research Letters.

[30]  H. Wakabayashi,et al.  Room-temperature deposition of a poling-free ferroelectric AlScN film by reactive sputtering , 2021 .

[31]  H. Wakabayashi,et al.  A possible origin of the large leakage current in ferroelectric Al1−x Sc x N films , 2021 .

[32]  C. Hwang,et al.  Review of ferroelectric field‐effect transistors for three‐dimensional storage applications , 2021 .

[33]  H. Hwang,et al.  Large Remnant Polarization in a Wake-Up Free Hf0.5Zr0.5O2 Ferroelectric Film through Bulk and Interface Engineering , 2021, 2101.04886.

[34]  Jacob L. Jones,et al.  A perspective on semiconductor devices based on fluorite-structured ferroelectrics from the materials–device integration perspective , 2020, Journal of Applied Physics.

[35]  A. Kuwabara,et al.  A computational search for wurtzite-structured ferroelectrics with low coercive voltages , 2020, APL Materials.

[36]  R. Olsson,et al.  Post-CMOS Compatible Aluminum Scandium Nitride/2D Channel Ferroelectric Field-Effect-Transistor Memory. , 2020, Nano letters.

[37]  Suman Datta,et al.  The future of ferroelectric field-effect transistor technology , 2020, Nature Electronics.

[38]  D. Kwon,et al.  One Nanometer HfO2‐Based Ferroelectric Tunnel Junctions on Silicon , 2020, Advanced Electronic Materials.

[39]  Jun Hee Lee,et al.  Scale-free ferroelectricity induced by flat phonon bands in HfO2 , 2020, Science.

[40]  Shosuke Fujii,et al.  Low-power linear computation using nonlinear ferroelectric tunnel junction memristors , 2020, Nature Electronics.

[41]  Weichuan Huang,et al.  Sub-nanosecond memristor based on ferroelectric tunnel junction , 2020, Nature Communications.

[42]  Damien Querlioz,et al.  Physics for neuromorphic computing , 2020, Nature Reviews Physics.

[43]  A century of ferroelectricity. , 2020, Nature materials.

[44]  Bin Gao,et al.  Reliability of analog resistive switching memory for neuromorphic computing , 2020 .

[45]  Wenjuan Zhu,et al.  Ferroelectric Tunneling Junctions Based on Aluminum Oxide/ Zirconium-Doped Hafnium Oxide for Neuromorphic Computing , 2019, Scientific Reports.

[46]  P. Xiang,et al.  Recent Progress in Two‐Dimensional Ferroelectric Materials , 2019, Advanced Electronic Materials.

[47]  Siddharth Joshi,et al.  Author Correction: Ferroelectric ternary content-addressable memory for one-shot learning , 2019, Nature Electronics.

[48]  Jacob L. Jones,et al.  On the Origin of the Large Remanent Polarization in La:HfO2 , 2019, Advanced Electronic Materials.

[49]  Ryan C. Davis,et al.  Crystal Phase Distribution and Ferroelectricity in Ultrathin HfO2–ZrO2 Bilayers , 2019, physica status solidi (b).

[50]  P. Ye,et al.  Ultrafast measurements of polarization switching dynamics on ferroelectric and anti-ferroelectric hafnium zirconium oxide , 2019, Applied Physics Letters.

[51]  K. Jin,et al.  Giant Electroresistance in Ferroionic Tunnel Junctions , 2019, iScience.

[52]  S. Slesazeck,et al.  Nanoscale resistive switching memory devices: a review , 2019, Nanotechnology.

[53]  Hon-Sum Philip Wong,et al.  Device and materials requirements for neuromorphic computing , 2019, Journal of Physics D: Applied Physics.

[54]  Kunwoo Park,et al.  Ferroelectric Polarization-Switching Dynamics and Wake-Up Effect in Si-Doped HfO2. , 2018, ACS applied materials & interfaces.

[55]  Wei Zhang,et al.  Origin of Ferroelectricity in Epitaxial Si-Doped HfO2 Films. , 2019, ACS applied materials & interfaces.

[56]  C. Hwang,et al.  Thermodynamic and Kinetic Origins of Ferroelectricity in Fluorite Structure Oxides , 2018, Advanced Electronic Materials.

[57]  B. Wagner,et al.  AlScN: A III-V semiconductor based ferroelectric , 2018, Journal of Applied Physics.

[58]  Young Jae Kwon,et al.  Dispersion in Ferroelectric Switching Performance of Polycrystalline Hf0.5Zr0.5O2 Thin Films. , 2018, ACS applied materials & interfaces.

[59]  Thomas Mikolajick,et al.  Review and perspective on ferroelectric HfO_2-based thin films for memory applications , 2018, MRS Communications.

[60]  Hao Jiang,et al.  Nucleation limited switching (NLS) model for HfO2-based metal-ferroelectric-metal (MFM) capacitors: Switching kinetics and retention characteristics , 2018, Applied Physics Letters.

[61]  T. Nishida,et al.  Tiered deposition of sub-5 nm ferroelectric Hf1-xZrxO2 films on metal and semiconductor substrates , 2018 .

[62]  Menglun Zhang,et al.  Flexible Film Bulk Acoustic Wave Filters toward Radiofrequency Wireless Communication. , 2018, Small.

[63]  Stefan Slesazeck,et al.  Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors , 2018 .

[64]  Tomonori Nishimura,et al.  Evolution of ferroelectric HfO2 in ultrathin region down to 3 nm , 2018 .

[65]  J. Íñiguez,et al.  A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films , 2018, Nature Materials.

[66]  Rahul Vaish,et al.  BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives , 2017 .

[67]  Jacob L. Jones,et al.  Si Doped Hafnium Oxide—A “Fragile” Ferroelectric System , 2017 .

[68]  Cheol Seong Hwang,et al.  Scale-up and optimization of HfO2-ZrO2 solid solution thin films for the electrostatic supercapacitors , 2017 .

[69]  B. Wagner,et al.  Identifying and overcoming the interface originating c-axis instability in highly Sc enhanced AlN for piezoelectric micro-electromechanical systems , 2017 .

[70]  S. Slesazeck,et al.  Switching Kinetics in Nanoscale Hafnium Oxide Based Ferroelectric Field-Effect Transistors. , 2017, ACS applied materials & interfaces.

[71]  Stefan Slesazeck,et al.  Physical Mechanisms behind the Field‐Cycling Behavior of HfO2‐Based Ferroelectric Capacitors , 2016 .

[72]  Uwe Schroeder,et al.  Effect of Zr Content on the Wake-Up Effect in Hf1-xZrxO2 Films. , 2016, ACS applied materials & interfaces.

[73]  A. Kersch,et al.  The Origin of Ferroelectricity in Hf$_{x}$ Zr$_{1-x}$ O$_2$: A Computational Investigation and a Surface Energy Model , 2015, 1507.00588.

[74]  K. Fujimura,et al.  Ferroelectricity in wurtzite structure simple chalcogenide , 2014 .

[75]  G. Pourtois,et al.  Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: A first principles insight , 2014 .

[76]  C. Hwang,et al.  The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity , 2014 .

[77]  Fei Cao,et al.  Wake-up effects in Si-doped hafnium oxide ferroelectric thin films , 2013 .

[78]  C. S. Hwang,et al.  Sub‐Picosecond Processes of Ferroelectric Domain Switching from Field and Temperature Experiments , 2012 .

[79]  U. Böttger,et al.  Ferroelectricity in hafnium oxide thin films , 2011 .

[80]  H. Seggern,et al.  Experimental and theoretical investigation on polarization reversal in unfatigued lead-zirconate-titanate ceramic , 2010 .

[81]  H. Morkoç,et al.  Oxides, Oxides, and More Oxides: High-κ Oxides, Ferroelectrics, Ferromagnetics, and Multiferroics , 2009 .

[82]  C. S. Hwang,et al.  The Inlaid Al2O3 Tunnel Switch for Ultrathin Ferroelectric Films , 2009 .

[83]  M. Durandurdu Pressure-induced phase transition in AlN: An ab initio molecular dynamics study , 2009 .

[84]  Sergei V. Kalinin,et al.  Polarization Control of Electron Tunneling into Ferroelectric Surfaces , 2009, Science.

[85]  Ho Won Jang,et al.  Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. , 2009, Nano letters.

[86]  Nobuaki Kawahara,et al.  Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering , 2009, Advanced materials.

[87]  Winfried W. Wilcke,et al.  Storage-class memory: The next storage system technology , 2008, IBM J. Res. Dev..

[88]  William A. Goddard,et al.  The ferroelectric and cubic phases in BaTiO3 ferroelectrics are also antiferroelectric , 2006, Proceedings of the National Academy of Sciences.

[89]  Ho Jin Cho,et al.  New TIT Capacitor with ZrO2/Al2O3/ZrO2 dielectrics for 60nm and below DRAMs , 2006, 2006 European Solid-State Device Research Conference.

[90]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[91]  T. Kikegawa,et al.  Phase Relations and Volume Changes of Hafnia under High Pressure and High Temperature , 2004 .

[92]  Dragan Damjanovic,et al.  FERROELECTRIC, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF FERROELECTRIC THIN FILMS AND CERAMICS , 1998 .

[93]  M. C. Scott,et al.  Fatigue-free ferroelectric capacitors with platinum electrodes , 1995, Nature.

[94]  David Bondurant,et al.  Ferroelectronic ram memory family for critical data storage , 1990 .

[95]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[96]  H. F. Kay,et al.  Thickness dependence of the nucleation field of triglycine sulphate , 1962 .

[97]  A. F. Devonshire XCVI. Theory of barium titanate , 1949 .

[98]  R. G. Breckenridge,et al.  High dielectric constant ceramics , 1946 .

[99]  M. Avrami Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III , 1941 .

[100]  H. Funakubo,et al.  Thickness scaling of (Al0.8Sc0.2)N films with remanent polarization beyond 100 μC cm−2 around 10 nm in thickness , 2021, Applied Physics Express.

[101]  A. Saxena,et al.  Ferroelectricity: 100 years on , 2021 .

[102]  Wei Lu,et al.  The future of electronics based on memristive systems , 2018, Nature Electronics.