The evolutionary history of 2,658 cancers

Cancer develops through a process of somatic evolution. Here, we use whole-genome sequencing of 2,778 tumour samples from 2,658 donors to reconstruct the life history, evolution of mutational processes, and driver mutation sequences of 39 cancer types. The early phases of oncogenesis are driven by point mutations in a small set of driver genes, often including biallelic inactivation of tumour suppressors. Early oncogenesis is also characterised by specific copy number gains, such as trisomy 7 in glioblastoma or isochromosome 17q in medulloblastoma. By contrast, increased genomic instability, a nearly four-fold diversification of driver genes, and an acceleration of point mutation processes are features of later stages. Copy-number alterations often occur in mitotic crises leading to simultaneous gains of multiple chromosomal segments. Timing analysis suggests that driver mutations often precede diagnosis by many years, and in some cases decades, providing a window of opportunity for early cancer detection.

Benjamin J. Raphael | Salem Malikic | Martin Peifer | Kortine Kleinheinz | Jonas Demeulemeester | Ignaty Leshchiner | Dimitri G. Livitz | Peter Van Loo | Yuan Ji | Gad Getz | Yu Fan | S. Cenk Sahinalp | Ke Yuan | Florian Markowetz | Marcin Imielinski | Yulia Rubanova | Kerstin Haase | Maxime Tarabichi | Geoff Macintyre | Jeff Wintersinger | Xiaotong Yao | Rameen Beroukhim | Hongtu Zhu | Moritz Gerstung | Amit Deshwar | Thomas J. Mitchell | Paul C. Boutros | Subhajit Sengupta | Marek Cmero | Clemency Jolly | Stefan C. Dentro | Santiago Gonzalez | Daniel Rosebrock | Pavana Anur | Kaixian Yu | Ignacio Vázquez-García | Lara Jerman | Nilgun Donmez | Steven Schumacher | Juhee Lee | Matthias Schlesner | David D. Bowtell | Ville Mustonen | Wenyi Wang | Quaid D. Morris | Paul T. Spellman | David C. Wedge | F. Markowetz | P. Spellman | G. Getz | R. Eils | Q. Morris | R. Beroukhim | S. C. Sahinalp | P. Boutros | D. Bowtell | Nilgun Donmez | P. Loo | D. Wedge | G. Ha | M. Imieliński | M. Gerstung | I. Martincorena | Ville Mustonen | M. Schlesner | S. Schumacher | Shankar Vembu | Yuan Ji | S. Cao | Yulia Rubanova | Santiago Gonzalez | Pavana Anur | Myron Peto | M. Peifer | K. Dawson | K. Haase | D. Rosebrock | D. Livitz | I. Leshchiner | Layla Oesper | K. Kleinheinz | Subhajit Sengupta | T. Mitchell | J. Demeulemeester | Ke Yuan | S. Malikić | G. Macintyre | Marek Cmero | S. Dentro | M. Tarabichi | J. Wintersinger | A. Deshwar | Kaixian Yu | Clemency Jolly | Yu Fan | M. Fittall | Ruben M. Drews | Juhee Lee | Hongtu Zhu | Wenyi Wang | A. Salcedo | H. Lee-Six | E. Christie | Yupeng Cun | Lara Jerman | Ruian Shi | O. Spiro | Xiaotong Yao | D. J. Adams | I. Vázquez-García | Tsun-Po Yang | David A. Wheeler | Lincoln D. Stein | Peter J. Campbell | Seung Jun Shin | D. W. Garsed | Lincoln Stein | Q. Morris | Peter J. Campbell

[1]  B. Taylor,et al.  deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution , 2016, Genome Biology.

[2]  A. Knudson Mutation and cancer: statistical study of retinoblastoma. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[3]  G. Getz,et al.  The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis , 2016, Nature Genetics.

[4]  Kenta Hongo,et al.  !"# $%&'( , 2018, GIS.

[5]  Angelika Amon,et al.  Single-chromosome Gains Commonly Function as Tumor Suppressors. , 2017, Cancer cell.

[6]  Shelley Tworoger,et al.  A candidate precursor to pelvic serous cancer (p53 signature) and its prevalence in ovaries and fallopian tubes from women with BRCA mutations. , 2008, Gynecologic oncology.

[7]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[8]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[9]  Giovanni Parmigiani,et al.  Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation , 2013, Proceedings of the National Academy of Sciences.

[10]  M. Nykter,et al.  The Evolutionary History of Lethal Metastatic Prostate Cancer , 2015, Nature.

[11]  Jun Yu,et al.  Analyses of non-coding somatic drivers in 2,658 cancer whole genomes , 2020, Nature.

[12]  Paul T. Spellman,et al.  Methods and challenges in timing chromosomal abnormalities within cancer samples , 2013, Bioinform..

[13]  Nicolai J. Birkbak,et al.  Tracking the Evolution of Non‐Small‐Cell Lung Cancer , 2017, The New England journal of medicine.

[14]  P. Lønning,et al.  Genomic Evolution of Breast Cancer Metastasis and Relapse , 2017, Cancer cell.

[15]  P. Nowell The clonal evolution of tumor cell populations. , 1976, Science.

[16]  Robert T. Jones,et al.  Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. , 2015, Cancer discovery.

[17]  Mario Cazzola,et al.  The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. , 2016, Blood.

[18]  Gary D. Bader,et al.  Divergent clonal selection dominates medulloblastoma at recurrence , 2016, Nature.

[19]  A. Børresen-Dale,et al.  The Life History of 21 Breast Cancers , 2012, Cell.

[20]  L. Salford,et al.  Trisomy 7 and sex chromosome loss in human brain tissue. , 1989, Cytogenetics and cell genetics.

[21]  M. Stratton,et al.  Clinical and biological implications of driver mutations in myelodysplastic syndromes. , 2013, Blood.

[22]  John Cairns,et al.  Mutation selection and the natural history of cancer , 1975, Nature.

[23]  Joshua F. McMichael,et al.  Age-related cancer mutations associated with clonal hematopoietic expansion , 2014, Nature Medicine.

[24]  S. Luo,et al.  High prevalence of focal and multi-focal somatic genetic variants in the human brain , 2018, Nature Communications.

[25]  Yuan Ji,et al.  Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types , 2018, bioRxiv.

[26]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[27]  Jian Li,et al.  Temporal dissection of tumorigenesis in primary cancers. , 2011, Cancer discovery.

[28]  T. Rohan,et al.  Human papillomavirus infection and time to progression and regression of cervical intraepithelial neoplasia. , 2003, Journal of the National Cancer Institute.

[29]  S. Gabriel,et al.  Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. , 2014, The New England journal of medicine.

[30]  G. Getz,et al.  The whole-genome panorama of cancer drivers , 2017, bioRxiv.

[31]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[32]  P. Campbell,et al.  Somatic mutation in cancer and normal cells , 2015, Science.

[33]  Amar S. Ahmad,et al.  Trends in the lifetime risk of developing cancer in Great Britain: comparison of risk for those born from 1930 to 1960 , 2015, British Journal of Cancer.

[34]  Funda Meric-Bernstam,et al.  Punctuated Copy Number Evolution and Clonal Stasis in Triple-Negative Breast Cancer , 2016, Nature Genetics.

[35]  Hans Clevers,et al.  Tissue-specific mutation accumulation in human adult stem cells during life , 2016, Nature.

[36]  E. Klein,et al.  High-Grade Prostatic Intraepithelial Neoplasia , 2012, Korean journal of urology.

[37]  David Pellman,et al.  A Mechanism Linking Extra Centrosomes to Chromosomal Instability , 2009, Nature.

[38]  V. Siskind,et al.  Ovulation and risk of epithelial ovarian cancer , 2003, International journal of cancer.

[39]  Peter J. Campbell,et al.  Somatic mutant clones colonize the human esophagus with age , 2018, Science.

[40]  G. Falk,et al.  Predictors of Progression to High-Grade Dysplasia or Adenocarcinoma in Barrett's Esophagus. , 2015, Gastroenterology clinics of North America.

[41]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[42]  A. Jemal,et al.  Cancer statistics, 2017 , 2017, CA: a cancer journal for clinicians.

[43]  Gary D Bader,et al.  International network of cancer genome projects , 2010, Nature.

[44]  Joshy George,et al.  Whole–genome characterization of chemoresistant ovarian cancer , 2015, Nature.

[45]  Peter J. Campbell,et al.  Population dynamics of normal human blood inferred from somatic mutations , 2018, Nature.

[46]  A. Gazdar,et al.  Preneoplasia of lung cancer. , 2010, Cancer biomarkers : section A of Disease markers.

[47]  P. Van Loo,et al.  Timing somatic events in the evolution of cancer , 2018, Genome Biology.

[48]  S. Tsunoda,et al.  Age-related remodelling of oesophageal epithelia by mutated cancer drivers , 2019, Nature.

[49]  Martin A. Nowak,et al.  Mutations driving CLL and their evolution in progression and relapse , 2015, Nature.

[50]  Ville Mustonen,et al.  The repertoire of mutational signatures in human cancer , 2018, Nature.

[51]  H. Brenner,et al.  Risk of progression of advanced adenomas to colorectal cancer by age and sex: estimates based on 840 149 screening colonoscopies , 2007, Gut.

[52]  M. Thun,et al.  Tobacco use and cancer: an epidemiologic perspective for geneticists , 2002, Oncogene.

[53]  The landscape of somatic mutation in normal colorectal epithelial cells , 2019, Nature.

[54]  Andrew Menzies,et al.  Subclonal diversification of primary breast cancer revealed by multiregion sequencing , 2015, Nature Medicine.

[55]  P. A. Futreal,et al.  Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal , 2018, Cell.

[56]  M. Stratton,et al.  Clock-like mutational processes in human somatic cells , 2015, Nature Genetics.

[57]  R. DePinho,et al.  Pancreatic cancer biology and genetics , 2002, Nature Reviews Cancer.

[58]  Joshua F. McMichael,et al.  Clonal evolution in relapsed acute myeloid leukemia revealed by whole genome sequencing , 2011, Nature.

[59]  W. Dupont,et al.  The natural history of low‐grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long‐term follow‐up , 2005, Cancer.

[60]  Chris Sander,et al.  Emerging landscape of oncogenic signatures across human cancers , 2013, Nature Genetics.

[61]  M. Stratton,et al.  High burden and pervasive positive selection of somatic mutations in normal human skin , 2015, Science.

[62]  Icgc,et al.  Pan-cancer analysis of whole genomes , 2017, bioRxiv.

[63]  Nicolai J. Birkbak,et al.  Clonal status of actionable driver events and the timing of mutational processes in cancer evolution , 2015, Science Translational Medicine.

[64]  Ville Mustonen,et al.  The evolutionary landscape of colorectal tumorigenesis , 2018, Nature Ecology & Evolution.

[65]  M. Stratton,et al.  The mutational landscape of normal human endometrial epithelium , 2018, bioRxiv.

[66]  Joshua F. McMichael,et al.  The Origin and Evolution of Mutations in Acute Myeloid Leukemia , 2012, Cell.

[67]  P. A. Futreal,et al.  Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing , 2014, Nature Genetics.