Modelling and system identification of an experimental apparatus for anomaly detection in mechanical systems

This paper presents design, modelling and system identification of a laboratory test apparatus that has been constructed to experimentally validate the concepts of anomaly detection in complex mechanical systems. The test apparatus is designed to be complex in itself due to partially correlated interactions amongst its individual components and functional modules. The experiments are conducted on the test apparatus to represent operations of mechanical systems where both dynamic performance and structural durability are critical.

[1]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[2]  H. Breusers,et al.  Applied Mathematical Modelling , 1976 .

[3]  E. C. Levy Complex-curve fitting , 1959, IRE Transactions on Automatic Control.

[4]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[5]  Matthew B Kennel,et al.  Estimating good discrete partitions from observed data: symbolic false nearest neighbors. , 2003, Physical review letters.

[6]  M. Klesnil,et al.  Fatigue of metallic materials , 1980 .

[7]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[8]  A. Ray,et al.  Detection of fatigue crack anomaly: a symbolic dynamics approach , 2004, Proceedings of the 2004 American Control Conference.

[9]  Asok Ray,et al.  Symbolic time series analysis for anomaly detection: A comparative evaluation , 2005, Signal Process..

[10]  Mario Sznaier,et al.  Robust Systems Theory and Applications , 1998 .

[11]  C. Finney,et al.  A review of symbolic analysis of experimental data , 2003 .

[12]  Henry D. I. Abarbanel,et al.  Analysis of Observed Chaotic Data , 1995 .

[13]  Asok Ray,et al.  Symbolic dynamic analysis of complex systems for anomaly detection , 2004, Signal Process..

[14]  Asok Ray,et al.  Hybrid life-extending control of mechanical systems: experimental validation of the concept , 2000, Autom..

[15]  J. Schoukens,et al.  Time domain identification, frequency domain identification. Equivalencies! Differences? , 2004, Proceedings of the 2004 American Control Conference.

[16]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[17]  David G. Stork,et al.  Pattern Classification , 1973 .

[18]  Mehmet Emre Çek,et al.  Analysis of observed chaotic data , 2004 .

[19]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .