Solid Oxide Fuel Cells: Fabrication and Microstructure

[1]  L. Bi,et al.  Sintering aids for proton-conducting oxides – A double-edged sword? A mini review , 2020 .

[2]  S. Jiang,et al.  In Situ Formation of Er0.4Bi1.6O3 Protective Layer at Cobaltite Cathode/Y2O3-ZrO2 Electrolyte Interface under Solid Oxide Fuel Cell Operation Conditions. , 2018, ACS applied materials & interfaces.

[3]  S. Jiang,et al.  Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells , 2018, Solid State Ionics.

[4]  S. Jiang,et al.  A FIB-STEM study of strontium segregation and interface formation of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode on Y2O3-ZrO2 electrolyte of solid oxide fuel cells , 2018 .

[5]  N. Brandon,et al.  Screen-printing inks for the fabrication of solid oxide fuel cell films: A review , 2017 .

[6]  S. Jiang,et al.  Highly active and stable Er0.4Bi1.6O3 decorated La0.76Sr0.19MnO3+δ nanostructured oxygen electrodes for reversible solid oxide cells , 2017 .

[7]  R. Vaßen,et al.  Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS) and plasma spray-physical vapor deposition (PS-PVD) , 2017 .

[8]  S. Jiang,et al.  A FIB-STEM study of La0.8Sr0.2MnO3 Cathode and Y2O3-ZrO2/Gd2O3-CeO2 electrolyte interfaces of solid oxide fuel cells , 2017 .

[9]  S. Jiang,et al.  Direct application of cobaltite-based perovskite cathodes on the yttria-stabilized zirconia electrolyte for intermediate temperature solid oxide fuel cells , 2016 .

[10]  S. Hall,et al.  The evolution of 'sol-gel' chemistry as a technique for materials synthesis , 2016 .

[11]  Jing-Li Luo,et al.  A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes , 2015 .

[12]  S. Jiang,et al.  Thermally and electrochemically induced electrode/electrolyte interfaces in solid oxide fuel cells: An AFM and EIS Study , 2015 .

[13]  Dragos Neagu,et al.  In situ growth of nanoparticles through control of non-stoichiometry. , 2013, Nature chemistry.

[14]  Zongping Shao,et al.  Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells , 2012 .

[15]  San Ping Jiang,et al.  Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges , 2012 .

[16]  Shaomin Liu,et al.  Effect of characteristics of (Sm,Ce)O2 powder on the fabrication and performance of anode-supported solid oxide fuel cells , 2012 .

[17]  R. O’Hayre,et al.  Proton-conducting yttrium-doped barium cerate ceramics synthesized by a cost-effective solid-state reactive sintering method , 2010 .

[18]  F. Chen,et al.  Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones , 2010 .

[19]  S. Jiang,et al.  High performance solid oxide fuel cells with electrocatalytically enhanced (La, Sr)MnO3 cathodes , 2009 .

[20]  S. Jiang,et al.  Fabrication and characterization of anode-supported tubular solid-oxide fuel cells by slip casting and dip coating techniques , 2009 .

[21]  Z. Lü,et al.  Performance evolution of NiO/yttria-stabilized zirconia anodes fabricated at different compaction pressures , 2009 .

[22]  T. He,et al.  Nanostructured palladium–La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3–ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells , 2008 .

[23]  S. Jiang,et al.  Synthesis of LaCoO3 nano-powders by aqueous gel-casting for intermediate temperature solid oxide fuel cells , 2008 .

[24]  S. Jiang,et al.  Lanthanum strontium manganese chromite cathode and anode synthesized by gel-casting for solid oxide fuel cells , 2007 .

[25]  S. Jiang,et al.  Synthesis and performance of (La0.75 Sr0.25) 1-x (Cr0.5 Mn0.5) O3 cathode powders of solid oxide fuel cells by gel-casting technique , 2007 .

[26]  S. Jiang,et al.  Lanthanum strontium manganite powders synthesized by gel-casting for solid oxide fuel cell cathode materials , 2007 .

[27]  Laxmidhar Besra,et al.  A review on fundamentals and applications of electrophoretic deposition (EPD) , 2007 .

[28]  Xiao-Dong Zhou,et al.  Application of vacuum deposition methods to solid oxide fuel cells , 2006 .

[29]  J. Kwok,et al.  GDC-Impregnated ( La0.75Sr0.25 ) ( Cr0.5Mn0.5 ) O3 Anodes for Direct Utilization of Methane in Solid Oxide Fuel Cells , 2006 .

[30]  E. Wachsman,et al.  Structural Stability and Conductivity of Phase-Stabilized Cubic Bismuth Oxides , 2004 .

[31]  Meilin Liu,et al.  A simple and cost-effective approach to fabrication of dense ceramic membranes on porous substrates , 2004 .

[32]  G. Meng,et al.  Application of novel aerosol-assisted chemical vapor deposition techniques for SOFC thin films , 2004 .

[33]  S. Jiang,et al.  A review of anode materials development in solid oxide fuel cells , 2004 .

[34]  S. Jiang,et al.  A Comparative Study of Fabrication and Performance of Ni/3 mol % Y 2 O 3 ­ ZrO2 and Ni/8 mol % Y 2 O 3 ­ ZrO2 Cermet Electrodes , 2003 .

[35]  S. Jiang,et al.  Effect of characteristics of Y2O3/ZrO2 powders on fabrication of anode-supported solid oxide fuel cells , 2003 .

[36]  T. Mori,et al.  Reactive Ce0.8RE0.2O1.9 (RE = La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) Powders via Carbonate Coprecipitation. 1. Synthesis and Characterization , 2001 .

[37]  A. Tsoga,et al.  Wettability and interfacial reactions in the systems NiYSZ and Ni/Ti-TiO2/YSZ , 1996 .

[38]  S. C. Singhal,et al.  Electrochemical Vapor Deposition of Yttria‐Stabilized Zirconia Films , 1990 .