Optical receivers

[1]  W. Schottky Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern , 1918 .

[2]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[3]  J. Johnson Thermal Agitation of Electricity in Conductors , 1928 .

[4]  D. O. North,et al.  An Analysis of the factors which determine signal/noise discrimination in pulsed-carrier systems , 1963 .

[5]  G. A. Baraff,et al.  Maximum Anisotropy Approximation for Calculating Electron Distributions; Application to High Field Transport in Semiconductors , 1964 .

[6]  G. Bedard,et al.  Photon Counting Statistics of Gaussian Light , 1966 .

[7]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[8]  R. A. Moore,et al.  Properties of alternately charged coplanar parallel strips by conformal mappings , 1968 .

[9]  W. Pratt Laser Communication Systems. , 1969 .

[10]  R. K. Chang,et al.  Spontaneous-Raman-Scattering Efficiency and Stimulated Scattering in Silicon , 1970 .

[11]  Malvin C. Teich,et al.  Photoelectron-Counting Distributions for Irradiance-Modulated Radiation* , 1970 .

[12]  S. M. Sze,et al.  Current transport in metal-semiconductor-metal (MSM) structures , 1971 .

[13]  R. D. Kasser,et al.  Noise factor contours for field-effect transistors at moderately high frequencies , 1972 .

[14]  R. Mcintyre The distribution of gains in uniformly multiplying avalanche photodiodes: Theory , 1972 .

[15]  J. Conradi,et al.  The distribution of gains in uniformly multiplying avalanche photodiodes: Experimental , 1972 .

[16]  C. R. Crowell,et al.  Energy-Conservation Considerations in the Characterization of Impact Ionization in Semiconductors , 1972 .

[17]  S. Personick Receiver design for digital fiber optic communication systems, II , 1973 .

[18]  Yoshihiko Mizushima,et al.  Schottky barrier height of n‐InxGa1−xAs diodes , 1973 .

[19]  C. R. Crowell,et al.  Ionization coefficients in semiconductors: A nonlocalized property , 1974 .

[20]  J. E. Goell,et al.  Input amplifiers for optical PCM receivers , 1974 .

[21]  J. E. Goell An optical repeater with high-impedance input amplifier , 1974 .

[22]  J. Hullett,et al.  Receiver Design for Multilevel Digital Optical Fiber Systems , 1975, IEEE Trans. Commun..

[23]  P. Balaban,et al.  Statistical evaluation of the error rate of the fiberguide repeater using importance sampling , 1976, The Bell System Technical Journal.

[24]  P. Runge,et al.  An Experimental 50 Mb/s Fiber Optic PCM Repeater , 1976, IEEE Trans. Commun..

[25]  J. Hullett,et al.  A Feedback Receive Amplifier for Optical Transmission Systems , 1976, IEEE Trans. Commun..

[26]  S. Personick,et al.  A Detailed Comparison of Four Approaches to the Calculation of the Sensitivity of Optical Fiber System Receivers , 1977, IEEE Trans. Commun..

[27]  S.D. Personick Receiver design for optical fiber systems , 1977, Proceedings of the IEEE.

[28]  G. E. Stillman,et al.  Chapter 5 Avalanche Photodiodes , 1977 .

[29]  Theodore I. Kamins,et al.  Device Electronics for Integrated Circuits , 1977 .

[30]  R. J. Keyes Optical and Infrared Detectors , 1977 .

[31]  D. Smith,et al.  A simplified approach to digital optical receiver design , 1978 .

[32]  C. A. Brackett,et al.  Atlanta fiber system experiment: Optical detector package , 1978, The Bell System Technical Journal.

[33]  R. Berry,et al.  Optical Fiber System Trials at 8 Mbits/s and 140 Mbits/s , 1978, IEEE Trans. Commun..

[34]  R. C. Hooper,et al.  Digital optical receiver design for non-zero extinction ratio using a simplified approach , 1978 .

[35]  D. H. Wolaver,et al.  Atlanta fiber system experiment: Practical 45-mb/s regenerator for lightwave transmission , 1978, The Bell System Technical Journal.

[36]  Koichi Asatani,et al.  High-speed optical pulse transmission at 1.29-µm wavelength using low-loss single-mode fibers , 1978 .

[37]  I. Garrett,et al.  Receivers for optical communications: A comparison of avalanche photodiodes with PIN-FET hybrids , 1978 .

[38]  J. Hullett,et al.  Receiver Design for Optical PPM Systems , 1978, IEEE Trans. Commun..

[39]  Stewart D. Personick Chapter 19 – Receiver Design , 1979 .

[40]  Low-noise optical detection of a 1.1 Gb/s optical data stream , 1979 .

[41]  K. Ogawa,et al.  GaAs f.e.t. transimpedance front-end design for a wideband optical receiver , 1979 .

[42]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[43]  K. Ogawa,et al.  Small area ingaas/inp p-i-n photodiodes: fabrication, characteristics and performance of devices in 274 mb/s and 45 mb/s lightwave receivers at 1.31 μm wavelength , 1980 .

[44]  D. Wake,et al.  p-i-nf.e.t. hybrid optical receiver for 1.1-1.6 μm optical communication systems , 1980 .

[45]  David R. Smith,et al.  p-i-n/f.e.t. hybrid optical receiver for longer-wavelength optical communication systems , 1980 .

[46]  S. D. Personick,et al.  Receiver design for optical fiber communication systems , 1980 .

[47]  C. A. Burrus,et al.  High-speed digital lightwave communication using LEDs and PIN photodiodes at 1.3 μm , 1980, The Bell System Technical Journal.

[48]  K. Ogawa Noise caused by GaAs mesfets in optical receivers , 1981, The Bell System Technical Journal.

[49]  S. R. Forrest,et al.  Excess-noise and receiver sensitivity measurements of In0.53Ga0.47As/InP avalanche photodiodes , 1981 .

[50]  H. J. Boll,et al.  A long-wavelength optical receiver using a short-channel Si-MOSFET , 1981, The Bell System Technical Journal.

[51]  I. Garrett Receivers for optical fibre communications , 1981 .

[52]  G. E. Stillman,et al.  Temperature dependent electron velocity-field characteristics for In0.53Ga0.47AS at high electric fields , 1982 .

[53]  J. Yamada,et al.  Gigabit/s optical receiver sensitivity and zero-dispersion single-mode fiber transmission at 1.55 µm , 1982 .

[54]  E. Snitzer Optical fiber telecommunications , 1982, IEEE Journal of Quantum Electronics.

[55]  J. Yamada,et al.  Characteristics of Gbit/s optical receiver sensitivity and long-span single-mode fiber transmission at 1.3 µm , 1982 .

[56]  B. Owen PIN-GaAs FET optical receiver with a wide dynamic range , 1982 .

[57]  G. Williams Wide-dynamic-range fiber optic receivers , 1982, 1982 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[58]  G. Arnold,et al.  Semiconductor devices for optical communication , 1982 .

[59]  P. P. Smyth,et al.  Experimental comparison of a germanium avalanche photodiode and InGaAs PINFET receiver for longer wavelength optical communication systems , 1982 .

[60]  S. R. Forrest,et al.  Sensitivity of avalanche photodetector receivers for long-wavelength optical communications , 1982, The Bell System Technical Journal.

[61]  Small-active-area germanium avalanche photodiode for single-mode fibre at 1.3 μm wavelength , 1983 .

[62]  Tran Muoi Receiver Design for Digital Fiber Optic Transmission Systems Using Manchester (Biphase) Coding , 1983, IEEE Trans. Commun..

[63]  Injection-locked 1.5 μm InGaAsP/InP lasers capable of 450 Mbit/s transmission over 106 km , 1983 .

[64]  Kinichiro Ogawa,et al.  Considerations for Optical Receiver Design , 1983, IEEE J. Sel. Areas Commun..

[65]  B. Kasper,et al.  High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions , 1983 .

[66]  Richard A. Linke,et al.  130 KM TRANSMISSION EXPERIMENT AT 2 GB/S USING SILICA-CORE FIBER AND A VAPOR PHASE TRANSPORTED DFB LASER. , 1984 .

[67]  A High Reliability High Sensitivity Lightwave Receiver for the SL Undersea Lightwave System , 1984, IEEE Journal on Selected Areas in Communications.

[68]  High sensitivity of VPE-grown InGaAs/InP-heterostructure APD with buffer layer and guard-ring structure , 1984 .

[69]  David G. Ross,et al.  A highly integrated regenerator for 295.6 Mbit/s undersea optical transmission , 1984, Journal of Lightwave Technology.

[70]  T. Torikai,et al.  High-speed planar-structure Inp/InGaAsP/InGaAs avalanche photodiode grown by VPE , 1984 .

[71]  T. Muoi Receiver design for high-speed optical-fiber systems , 1984 .

[72]  A. A. Abidi Gigahertz transresistance amplifiers in fine line NMOS , 1984 .

[73]  Ge APD/GaAs FET/op-amp transimpedance optical receiver design having minimum noise and intersymbol interference characteristics , 1984 .

[74]  P. P. Smyth,et al.  PINFET hybrid optical receivers for 1.2 Gbit/s transmission systems operating at 1.3 and 1.55 μm wavelength , 1984 .

[75]  H. Toba,et al.  Injection-locking technique applied to a 170 km transmission experiment at 445•8 Mbit/s , 1984 .

[76]  M. Aiki,et al.  446 Mbit/s integrated optical repeater , 1985, Journal of Lightwave Technology.

[77]  Richard A. Linke,et al.  4 Gb/s Transmission over 103 km of Optical Fiber Using a Novel Electronic Multiplexer/Demultiplexer , 1985 .

[78]  Joe C. Campbell,et al.  SAGM avalanche photodiode optical receiver for 2 Gbit/s and 4 Gbit/s , 1985 .

[79]  C. Y. Chen,et al.  2‐Gb/s sensitivity of a Ga0.47In0.53As photoconductive detector/GaAs field‐effect transistor hybrid photoreceiver , 1985 .

[80]  Govind P. Agrawal,et al.  Power penalty due to decision-time jitter in optical communication systems , 1986 .

[81]  Kenya Nakai,et al.  Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate , 1986 .

[82]  T. M. Shen Power penalty due to decision-time jitter in receivers using avalanche photodiodes , 1986 .

[83]  Gadi Eisenstein,et al.  Coaxially mounted 67 GHz bandwidth InGaAs PIN photodiode , 1986 .

[84]  A. L. Kellner,et al.  Composition dependence of Au/InxAl1−xAs Schottky barrier heights , 1986 .

[85]  J. J. O'Reilly,et al.  Power penalty due to jitter on optical communication systems , 1987 .

[86]  B. Wedding,et al.  5 Gbit/s transmission system experiment over 111 km of optical fibre , 1987 .

[87]  Sadao Fujita,et al.  Long-distance gigabit-range optical fiber transmission experiments employing DFB-LD's and InGaAs-APD's , 1987 .

[88]  W. Powazinik,et al.  Measurement of hole velocity in n-type InGaAs , 1987 .

[89]  John E. Bowers,et al.  An APD/FET optical receiver operating at 8 Gbit/s , 1987 .

[90]  Joe C. Campbell,et al.  Multigigabit-per-second avalanche photodiode lightwave receivers , 1987 .

[91]  Osamu Wada,et al.  GaInAs pin photodiode/GaAs preamplifier photoreceiver for gigabit-rate communications systems using flip-chip bonding techniques , 1988 .

[92]  J.M. Woodall,et al.  High-speed 1.3 mu m GaInAs detectors fabricated on GaAs substrates , 1988, IEEE Electron Device Letters.

[93]  J. Shibata,et al.  A monolithically integrated InGaAs/InP photoreceiver operating with a single 5-V power supply , 1988 .

[94]  P. Vettiger,et al.  105-GHz bandwidth metal-semiconductor-metal photodiode , 1988, IEEE Electron Device Letters.

[95]  N. Kuwata,et al.  Monolithic pin-HEMT amplifier on an InP substrate grown by OMVPE for long-wavelength fibre optic communications , 1988 .

[96]  Sadao Fujita,et al.  10 Gbit/s, 100 km optical fibre transmission experiment using high-speed MQW DFB-LD and back-illuminated GaInAs APD , 1989 .

[97]  N. Olsson Lightwave systems with optical amplifiers , 1989 .

[98]  J. Gimlett,et al.  High-performance monolithic dual-MSM photodetector for long-wavelength coherent receivers , 1989 .

[99]  M. Sasaki,et al.  OEIC technology and its application to subscriber loops , 1989 .

[100]  Hideki Hayashi,et al.  Low-noise current optoelectronic integrated receiver with internal equalizer for gigabit-per-second long-wavelength optical communications , 1990 .

[101]  Sethumadhavan Chandrasekhar,et al.  4 Gbit/s pin/HBT monolithic photoreceiver , 1990 .

[102]  L. E. Tarof Planar InP/InGaAs avalanche photodetector with gain-bandwidth product in excess of 100 GHz , 1991 .

[103]  D. Rogers Integrated optical receivers using MSM detectors , 1991 .

[104]  J. Chyi,et al.  Resonant cavity-enhanced (RCE) photodetectors , 1991 .

[105]  W.-P. Hong,et al.  Monolithically integrated waveguide-MSM detector-HEMT amplifier receiver for long-waveguide lightwave systems , 1991, IEEE Photonics Technology Letters.

[106]  High sensitivity 10 Gbit/s optical receiver using two cascaded EDFA preamplifiers , 1991 .

[107]  R. Boudreau,et al.  High gain (21 dB) packaged semiconductor optical amplifiers , 1991, 1991 Proceedings 41st Electronic Components & Technology Conference.

[108]  L. Pophillat,et al.  180 photons/bit in 140 Mbit/s, 305 km direct-detection optical transmission experiment , 1991 .

[109]  J. Soole,et al.  InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications , 1991 .

[110]  Kenji Kawano,et al.  A high-efficiency 50 GHz InGaAs multimode waveguide photodetector , 1992 .

[111]  H. Hayashi,et al.  An ultra-high-speed optoelectronic integrated receiver for fiber-optic communications , 1992 .

[112]  E. H. Bottcher,et al.  Influence of space charges on the impulse response of InGaAs metal-semiconductor-metal photodetectors , 1992 .

[113]  Atilio Gameiro,et al.  10 Gbit/s timing recovery circuit using dielectric resonator and active bandpass filters , 1992 .

[114]  Yuichi Kawamura,et al.  InGaAsP-InA1As Superlattice Avalanche Photodiode , 1992 .

[115]  H. Griem,et al.  High-performance back-illuminated InGaAs/InAlAs MSM photodetector with a record responsivity of 0.96 A/W , 1992, IEEE Photonics Technology Letters.

[116]  M. Kawachi,et al.  Polarization sensitivity of a silica waveguide thermooptic phase shifter for planar lightwave circuits , 1992, IEEE Photonics Technology Letters.

[117]  P.E. Barnsley,et al.  A 4*5 Gb/s transmission system with all-optical clock recovery , 1992, IEEE Photonics Technology Letters.

[118]  U. Langmann,et al.  A Si bipolar phase and frequency detector IC for clock extraction up to 8 Gb/s , 1992 .

[119]  A.H. Gnauck,et al.  A transimpedance APD optical receiver operating at 10 Gb/s , 1992, IEEE Photonics Technology Letters.

[120]  Y. Akatsu,et al.  A 10 Gb/s high sensitivity, monolithically integrated p-i-n-HEMT optical receiver , 1993, IEEE Photonics Technology Letters.

[121]  S. Sugou,et al.  High-speed and low-dark-current flip-chip InAlAs/InAlGaAs quaternary well superlattice APDs with 120 GHz gain-bandwidth product , 1993, IEEE Photonics Technology Letters.

[122]  R. Sabella,et al.  Analysis of InGaAs p-i-n photodiode frequency response , 1993 .

[123]  T. Baird,et al.  High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes , 1993, IEEE Photonics Technology Letters.

[124]  J. E. Sitch,et al.  Hybrid optical receivers with integrated electronics , 1993 .

[125]  S. Chandrasekhar,et al.  High-speed monolithic p-i-n/HBT and HPT/HBT photoreceivers implemented with simple phototransistor structure , 1993, IEEE Photonics Technology Letters.

[126]  B. L. Patel,et al.  12 GHz PIN-HEMT optical receiver front end , 1993 .

[127]  Emmerich Bertagnolli,et al.  Silicon bipolar technology and circuits for optical communications at data rates above 10 GBit/s , 1993 .

[128]  U. Koren,et al.  High quantum efficiency and narrow absorption bandwidth of the wafer-fused resonant In/sub 0.53/Ga/sub 0.47/As photodetectors , 1994, IEEE Photonics Technology Letters.

[129]  Eiichi Sano,et al.  A monolithically integrated photoreceiver compatible with InP/InGaAs HBT fabrication process , 1994 .

[130]  Y. Imai,et al.  Compact 10 Gbit/s optical transmitter and receiver circuit packs , 1994 .

[131]  T. Nagatsuma,et al.  110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-/spl mu/m wavelength , 1994, IEEE Photonics Technology Letters.

[132]  D. G. Knight,et al.  Noise performance of separate absorption, grading, charge and multiplication InP/InGaAs avalanche photodiodes , 1994, IEEE Photonics Technology Letters.

[133]  G. Haddad,et al.  7.1 GHz bandwidth monolithically integrated In/sub 0.53/Ga/sub 0.47/As/In/sub 0.52/Al/sub 0.48/As PIN-HBT transimpedance photoreceiver , 1994, IEEE Photonics Technology Letters.

[134]  L. Eastman,et al.  Optimization of high-speed metal-semiconductor-metal photodetectors , 1994, IEEE Photonics Technology Letters.

[135]  S. W. Granlund,et al.  Optical Preamplifier Receivers: Application to Long-Haul Digital Transmission , 1994 .

[136]  Flip-chip lnAlAs/lnGaAs superlattice avalanche photodiodes with back-illuminated structures , 1994 .

[137]  T. Minami,et al.  Packaging technology for a 10-Gb/s photoreceiver module , 1994 .

[138]  Resonant-cavity-enhanced pin photodetector with 17 GHz bandwidth-efficiency product , 1994 .

[139]  B. L. Patel,et al.  Practical implementation of high performance optical transmitter/receiver subsystems for 20 Gbit/s TDM operation , 1994 .

[140]  G. Y. Robinson,et al.  110-GHz GaInAs/InP double heterostructure p-i-n photodetectors , 1995 .

[141]  Lester F. Eastman,et al.  High-frequency, high-efficiency MSM photodetectors , 1995 .

[142]  Aaron Buchwald,et al.  Integrated Fiber-Optic Receivers , 1995 .

[143]  Patrick Fay,et al.  15 GHz monolithic MODFET-MSM integrated photoreceiver operating at 1.55 mu m wavelength , 1995 .

[144]  J. Muszalski,et al.  Resonant cavity enhanced photonic devices , 1995 .

[145]  J. Chyi,et al.  High-responsivity InGaAs MSM photodetectors with semi-transparent Schottky contacts , 1995 .

[146]  J.E. Bowers,et al.  Travelling-wave photodetectors with 172-GHz bandwidth and 76-GHz bandwidth-efficiency product , 1995, IEEE Photonics Technology Letters.

[147]  Chi-Kuang Sun,et al.  120-GHz long-wavelength low-capacitance photodetector with an air-bridged coplanar metal waveguide , 1995, IEEE Photonics Technology Letters.

[148]  H. Kamitsuna,et al.  Ultra-wideband monolithic photoreceivers using HBT-compatible HPTs with novel base circuits, and simultaneously integrated with an HBT amplifier , 1995 .

[149]  S. Chandrasekhar,et al.  20-Gb/s monolithic p-i-n/HBT photoreceiver module for 1.55-μm applications , 1995, IEEE Photonics Technology Letters.

[150]  M. Deen,et al.  Multiplication in separate absorption, grading, charge, and multiplication InP-InGaAs avalanche photodiodes , 1995 .

[151]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[152]  Sherman Karp,et al.  Optical Communications , 1976 .