Application of Traffic Conflict Decision Criteria for Signalized Intersections Using an Individual Vehicle Tracking Technique

Development of an accident estimation model based on accident data can be made after accident occurrences. However, the taking of historical accident data is not easy, and there have been differences between real accident data and police-reported accident data. Also, another difficult shortcoming is that historical traffic accident data better consider driver behavior or intersection characteristics. A new method needs to be developed that can predict accident occurrences for traffic safety improvement in black spots. Traffic conflict decision techniques can acquire and analyze data in time and space, requiring less data collection through investigation. However, there are shortcomings: as existing traffic conflict techniques do not operate automatically, the analyst's opinion could easily affect the study results. Also, existing methods do not consider the severity of traffic conflicts. In this study, the authors presented traffic conflict decision criteria which consider conflict severity, including opposing left turn traffic conflict and cross traffic conflict decision criteria. In order to test these criteria, the authors acquired three signalized intersection images (two intersections in Sungnam city and one intersection in Paju) and analyzed the acquired images using image processing techniques based on individual vehicle tracking technology. Within the analyzed images, level 1 conflicts occurred 343 times over three intersections. Some of these traffic conflicts resulted in level 3 conflict situations. Level 3 traffic conflicts occurred 25 times. From the study results, the authors found that traffic conflict decision techniques can be an alternative to evaluate traffic safety in black spots.