Perovskite-type oxides for high-temperature oxygen separation membranes

Abstract Oxygen permeation through dense ceramic membranes of perovskite-like SrCo 0.9− x Fe 0.1 Cr x O 3− δ ( x  = 0.01–0.05), Sr 1− x − y Ln x CoO 3− δ (Ln = La, Nd, Sm, Gd; x  = 0.30–0.35; y  = 0–0.10), SrCo 1− x Ti x O 3− δ ( x  = 0.05–0.20) and LaM 1− x Ni x O 3− δ (M = Ga, Co, Fe; x  = 0–0.6) was studied. The SrCoO 3− δ -based solid solutions with cubic perovskite structure were found to exhibit highest permeation fluxes compared to other membranes. However, high thermal expansion coefficients and interaction with gas species such as carbon dioxide may complicate the employment of SrCoO 3− δ membranes for oxygen separation membranes. Alternatively, the LaGa 1− x Ni x O 3− δ ( x  = 0.2–0.5) perovskites, having significant permeation fluxes as well as thermal expansion coefficients in the range of (10.8–11.6) × 10 −6  K −1 , were demonstrated to be suitable as membrane materials at oxygen pressures from 1 × 10 −2 to 2 × 10 4  Pa. Testing oxygen permeation at oxygen partial pressures of 1–60 atm showed that only oxides with a high oxygen deficiency such as SrCo 0.85 Ti 0.15 F 3− δ possess sufficient oxygen permeation fluxes. The oxygen permeability of perovskites on the basis of LaGaO 3 and LaCoO 3− δ was found to be negligible at oxygen pressures above 15 atm, caused by low oxygen vacancy concentration and ionic conductivity of such ceramic materials.

[1]  V. Kharton,et al.  Mixed electronic and ionic conductivity of LaCo(M)O3 (M = Ga, Cr, Fe or Ni). I. Oxygen transport in perovskites LaCoO3-LaGaO3 , 1997 .

[2]  U. Balachandran,et al.  Dense ceramic membranes for partial oxygenation of methane , 1994 .

[3]  Harumi Yokokawa,et al.  Oxygen permeation modelling of perovskites , 1993 .

[4]  B. Steele,et al.  Oxygen transport in selected nonstoichiometric perovskite-structure oxides , 1992 .

[5]  H. Kruidhof,et al.  Oxygen Permeability of Strontium-Doped LaCoO 3-δ Perovskites , 1994 .

[6]  T. Mazanec Prospects for ceramic electrochemical reactors in industry , 1994 .

[7]  Henricus J.M. Bouwmeester,et al.  Dense Ceramic Membranes for Oxygen Separation , 1997, The CRC Handbook of SOLID STATE Electrochemistry.

[8]  A. Kovalevsky,et al.  Ceramic Microstructure and Oxygen Permeability of SrCo ( Fe , M ) O 3 − δ ( M = Cu or Cr ) Perovskite Membranes , 1998 .

[9]  H. Bouwmeester,et al.  Chapter 10 Dense ceramic membranes for oxygen separation , 1996 .

[10]  A. Kovalevsky,et al.  Oxygen permeability and thermal expansion of SrCo (Ti)O3−δ perovskites , 1998 .

[11]  A. Kovalevsky,et al.  Oxygen permeation through Sr(Ln)CoO3−δ (Ln=La, Nd, Sm, Gd) ceramic membranes , 1998 .

[12]  Yi Hua Ma,et al.  Waste Reduction and Recovery Using O2-Permeable Membrane Reactors , 1994 .

[13]  J. Kilner,et al.  Surface oxygen exchange of La0.3Sr0.7CoO3-d , 1997 .

[14]  A. Jacobson,et al.  Oxygen permeation studies of SrCo0.8Fe0.2O3 − δ , 1995 .

[15]  V. Kharton,et al.  Materials of high-temperature electrochemical oxygen membranes , 1996 .

[16]  V. Kharton,et al.  Oxygen Ionic and Electronic Transport in LaGa1−xNixO3−δPerovskites , 1999 .

[17]  V. Kharton,et al.  Mixed electronic and ionic conductivity of LaCo(M)O3 (M=Ga, Cr, Fe or Ni): III. Diffusion of oxygen through LaCo1−x−yFexNiyO3±δ ceramics , 1998 .

[18]  A. Kovalevsky,et al.  Oxygen permeability of perovskites in the system SrCoO 3 − δ-SrTiO 3 , 1997 .

[19]  V. Kharton,et al.  Oxygen ionic transport in a-site-deficient perovskites La(Pb)FeO3 , 1998 .

[20]  F. Marques,et al.  Role of water vapour pressure on the electrical conductivity of La0.9Sr0.1GaO3 , 1998 .