Proof nets for the Lambek-Grishin calculus

Grishin's generalization of Lambek's Syntactic Calculus combines a non-commutative multiplicative conjunction and its residuals (product, left and right division) with a dual family: multiplicative disjunction, right and left difference. Interaction between these two families takes the form of linear distributivity principles. We study proof nets for the Lambek-Grishin calculus and the correspondence between these nets and unfocused and focused versions of its sequent calculus.

[1]  R. Seely,et al.  Proof theory for full intuitionistic linear logic, bilinear logic, and MIX categories. , 1997 .

[2]  Michael Moortgat,et al.  Continuation Semantics for Symmetric Categorial Grammar , 2007, WoLLIC.

[3]  Arno Bastenhof,et al.  Polarized Montagovian Semantics for the Lambek-Grishin Calculus , 2010, FG.

[4]  Richard Moot,et al.  Proof nets for display logic , 2007, ArXiv.

[5]  Richard Moot,et al.  Proof Nets for the Multimodal Lambek Calculus , 1999, Stud Logica.

[6]  Joachim Lambek,et al.  On the Calculus of Syntactic Types , 1961 .

[7]  Michael Moortgat,et al.  Symmetries in Natural Language Syntax and Semantics: The Lambek-Grishin Calculus , 2007, WoLLIC.

[8]  Michael Moortgat,et al.  Continuation semantics for the Lambek-Grishin calculus , 2010, Inf. Comput..

[9]  J. Lambek The Mathematics of Sentence Structure , 1958 .

[10]  Michael Moortgat,et al.  Multimodal linguistic inference , 1995, J. Log. Lang. Inf..

[11]  Hugo Herbelin,et al.  The duality of computation , 2000, ICFP '00.

[12]  Michael Moortgat,et al.  Symmetric Categorial Grammar , 2009, J. Philos. Log..

[13]  Jean-Marc Andreoli,et al.  Fucusing and Proof-Nets in Linear and Non-commutative Logic , 1999, LPAR.

[14]  C. Retoré,et al.  On the semantic readings of proof-nets , 1996 .

[15]  Laura Kallmeyer,et al.  Parsing Beyond Context-Free Grammars , 2010, Cognitive Technologies.

[16]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[17]  J. Lambek,et al.  Categorial and Categorical Grammars , 1988 .

[18]  Jean-Marc Andreoli Focussing and proof construction , 2001, Ann. Pure Appl. Log..

[19]  Jean-Yves Girard,et al.  A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.

[20]  Glyn Morrill,et al.  Type Logical Grammar: Categorial Logic of Signs , 1994 .

[21]  Rajeev Goré,et al.  Substructural Logics on Display , 1998, Log. J. IGPL.