Component analysis of the foveal local electroretinogram elicited with sinusoidal flicker

Abstract The purpose of this paper is to analyze the sources of the local electroretinogram (LERG) in the primate eye, in response to sinusoidal light input. A review of existing primate data suggests that the late receptor potential (LRP) dominates the low-amplitude response to weak input modulations; this conclusion is compatible with intra- and extracellular recordings from lower species that have shown that the other major ERG potentials arise from nonneural cells that respond poorly to flickering stimuli. Reported here are new experiments designed to test the origins of the LERG, including regional retinal recordings, Fourier waveform analysis, and spectral sensitivity data. The results support our earlier conclusion that the low-amplitude LERG obtained with sinusoidal flicker is dominated by the LRP.

[1]  D. Norren,et al.  Increment spectral sensitivities of the primate late receptor potential and b-wave , 1977, Vision Research.

[2]  Chromatic adaptation in the macaque. , 1966, Journal of comparative and physiological psychology.

[3]  W. S. Baron The Foveal Local Erg Response to Transient and Steady State Flickering Stimuli , 1977 .

[4]  R. L. de Valois,et al.  Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. , 1974, Vision research.

[5]  R. M. Boynton,et al.  Primate cone sensitivity to flicker during light and dark adaptation as indicated by the foveal local electroretinogram , 1979, Vision Research.

[6]  K. Tansley,et al.  The spectral sensitivity of the pure‐cone retina of the grey squirrel (Sciurus carolinensis leucotis) , 1955, The Journal of physiology.

[7]  R. L. Valois,et al.  Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests. , 1974, Vision research.

[8]  D. vanNorren Macaque lens absorption in vivo. , 1972 .

[9]  R. Harwerth,et al.  Red-Green Cone Interactions in the Increment-Threshold Spectral Sensitivity of Primates , 1971, Science.

[10]  R M Boynton,et al.  Selective chromatic adaptation in primate photoreceptors. , 1972, Vision research.

[11]  W. Noell,et al.  The origin of the electroretinogram. , 1954, American journal of ophthalmology.

[12]  T. Wiesel,et al.  Analysis of the intraretinal electroretinogram in the intact cat eye , 1961, The Journal of physiology.

[13]  T. Wiesel,et al.  Localization of origins of electroretinogram components by intraretinal recording in the intact cat eye , 1961, The Journal of physiology.

[14]  J. Dowling,et al.  Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. , 1970, Journal of neurophysiology.

[15]  R. Miller,et al.  Role of K + in generation of b-wave of electroretinogram. , 1973, Journal of neurophysiology.

[16]  Devalois Rl BEHAVIORAL AND ELECTROPHYSIOLOGICAL STUDIES OF PRIMATE VISION. , 1965 .

[17]  P Padmos,et al.  The vector voltmeter as a tool to measure electroretinogram spectral sensitivity and dark adaptation. , 1972, Investigative ophthalmology.

[18]  W. S. Baron Maxwellian view stimulator for electrophysiological or psychophysical work. , 1973, Applied optics.

[19]  R. M. Boynton,et al.  Response of primate cones to sinusoidally flickering homochromatic stimuli. , 1975, The Journal of physiology.

[20]  R. L. Valois,et al.  Primate color vision. , 1968, Science.

[21]  R. M. Boynton,et al.  The primate foveal local electroretinogram: an indicator of photoreceptor activity. , 1974, Vision research.

[22]  F. Dudek,et al.  Slow PIII component of the carp electroretinogram , 1975, The Journal of general physiology.

[23]  Walter Stiles,et al.  The Liminal Brightness Increment as a Function of Wave-Length for Different Conditions of the Foveal and Parafoveal Retina , 1933 .

[24]  H. Spekreijse,et al.  The spectral sensitivities of isolated human color mechanisms determined from contrast evoked potential measurements , 1975, Vision Research.

[25]  E. Yamashita Some analyses of slow potentials of toad's retina. , 1959, The Tohoku journal of experimental medicine.

[26]  Macaque photopic spectral sensitivity. , 1971 .

[27]  Richard C. Singleton,et al.  On computing the fast Fourier transform , 1967, Commun. ACM.

[28]  E. Sutcliffe,et al.  THE DIFFERENCES IN ELECTRICAL RESPONSE OF THE RETINA OF THE FROG AND HORNED TOAD ACCORDING TO THE POSITION OF THE ELECTRODES , 1930 .

[29]  James E. Lebensohn,et al.  Sensory Mechanisms of the Retina , 1947 .

[30]  M. Murakami,et al.  Differentiation of P 3 subcomponents in isolated mammalian retinas. , 1968, Vision research.

[31]  Edward A. Boettner,et al.  Transmission of the Ocular Media , 1962 .

[32]  F. Crescitelli The electroretinogram of the antelope ground squirrel , 1961 .

[33]  M. Murakami,et al.  The early and late receptor potentials of monkey cones and rods. , 1965, Cold Spring Harbor symposia on quantitative biology.

[34]  K. Brown,et al.  The electroretinogram: its components and their origins. , 1968, UCLA forum in medical sciences.

[35]  A. Kaneko,et al.  Differentiation of P 3 subcomponents in cold-blooded vertebrate retinas. , 1966, Vision research.